Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(14m^{2}+9m\right)
Factor out 2.
m\left(14m+9\right)
Consider 14m^{2}+9m. Factor out m.
2m\left(14m+9\right)
Rewrite the complete factored expression.
28m^{2}+18m=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-18±\sqrt{18^{2}}}{2\times 28}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-18±18}{2\times 28}
Take the square root of 18^{2}.
m=\frac{-18±18}{56}
Multiply 2 times 28.
m=\frac{0}{56}
Now solve the equation m=\frac{-18±18}{56} when ± is plus. Add -18 to 18.
m=0
Divide 0 by 56.
m=-\frac{36}{56}
Now solve the equation m=\frac{-18±18}{56} when ± is minus. Subtract 18 from -18.
m=-\frac{9}{14}
Reduce the fraction \frac{-36}{56} to lowest terms by extracting and canceling out 4.
28m^{2}+18m=28m\left(m-\left(-\frac{9}{14}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{9}{14} for x_{2}.
28m^{2}+18m=28m\left(m+\frac{9}{14}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
28m^{2}+18m=28m\times \frac{14m+9}{14}
Add \frac{9}{14} to m by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
28m^{2}+18m=2m\left(14m+9\right)
Cancel out 14, the greatest common factor in 28 and 14.