Evaluate
\frac{2325989}{2800}\approx 830.710357143
Factor
\frac{919 \cdot 2531}{7 \cdot 2 ^ {4} \cdot 5 ^ {2}} = 830\frac{1989}{2800} = 830.7103571428571
Share
Copied to clipboard
\frac{28}{5}-\frac{201}{80}+365+295+\frac{375}{3.5}+2.7\times 2.8\times 8
Convert decimal number 2.5125 to fraction \frac{25125}{10000}. Reduce the fraction \frac{25125}{10000} to lowest terms by extracting and canceling out 125.
\frac{448}{80}-\frac{201}{80}+365+295+\frac{375}{3.5}+2.7\times 2.8\times 8
Least common multiple of 5 and 80 is 80. Convert \frac{28}{5} and \frac{201}{80} to fractions with denominator 80.
\frac{448-201}{80}+365+295+\frac{375}{3.5}+2.7\times 2.8\times 8
Since \frac{448}{80} and \frac{201}{80} have the same denominator, subtract them by subtracting their numerators.
\frac{247}{80}+365+295+\frac{375}{3.5}+2.7\times 2.8\times 8
Subtract 201 from 448 to get 247.
\frac{247}{80}+\frac{29200}{80}+295+\frac{375}{3.5}+2.7\times 2.8\times 8
Convert 365 to fraction \frac{29200}{80}.
\frac{247+29200}{80}+295+\frac{375}{3.5}+2.7\times 2.8\times 8
Since \frac{247}{80} and \frac{29200}{80} have the same denominator, add them by adding their numerators.
\frac{29447}{80}+295+\frac{375}{3.5}+2.7\times 2.8\times 8
Add 247 and 29200 to get 29447.
\frac{29447}{80}+\frac{23600}{80}+\frac{375}{3.5}+2.7\times 2.8\times 8
Convert 295 to fraction \frac{23600}{80}.
\frac{29447+23600}{80}+\frac{375}{3.5}+2.7\times 2.8\times 8
Since \frac{29447}{80} and \frac{23600}{80} have the same denominator, add them by adding their numerators.
\frac{53047}{80}+\frac{375}{3.5}+2.7\times 2.8\times 8
Add 29447 and 23600 to get 53047.
\frac{53047}{80}+\frac{3750}{35}+2.7\times 2.8\times 8
Expand \frac{375}{3.5} by multiplying both numerator and the denominator by 10.
\frac{53047}{80}+\frac{750}{7}+2.7\times 2.8\times 8
Reduce the fraction \frac{3750}{35} to lowest terms by extracting and canceling out 5.
\frac{371329}{560}+\frac{60000}{560}+2.7\times 2.8\times 8
Least common multiple of 80 and 7 is 560. Convert \frac{53047}{80} and \frac{750}{7} to fractions with denominator 560.
\frac{371329+60000}{560}+2.7\times 2.8\times 8
Since \frac{371329}{560} and \frac{60000}{560} have the same denominator, add them by adding their numerators.
\frac{431329}{560}+2.7\times 2.8\times 8
Add 371329 and 60000 to get 431329.
\frac{431329}{560}+7.56\times 8
Multiply 2.7 and 2.8 to get 7.56.
\frac{431329}{560}+60.48
Multiply 7.56 and 8 to get 60.48.
\frac{431329}{560}+\frac{1512}{25}
Convert decimal number 60.48 to fraction \frac{6048}{100}. Reduce the fraction \frac{6048}{100} to lowest terms by extracting and canceling out 4.
\frac{2156645}{2800}+\frac{169344}{2800}
Least common multiple of 560 and 25 is 2800. Convert \frac{431329}{560} and \frac{1512}{25} to fractions with denominator 2800.
\frac{2156645+169344}{2800}
Since \frac{2156645}{2800} and \frac{169344}{2800} have the same denominator, add them by adding their numerators.
\frac{2325989}{2800}
Add 2156645 and 169344 to get 2325989.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}