Solve for c
c = \frac{375300}{37753} = 9\frac{35523}{37753} \approx 9.940931846
Share
Copied to clipboard
278\left(-c+100\right)=c\times \frac{578}{0.2295}
Variable c cannot be equal to 100 since division by zero is not defined. Multiply both sides of the equation by -c+100.
-278c+27800=c\times \frac{578}{0.2295}
Use the distributive property to multiply 278 by -c+100.
-278c+27800=c\times \frac{5780000}{2295}
Expand \frac{578}{0.2295} by multiplying both numerator and the denominator by 10000.
-278c+27800=c\times \frac{68000}{27}
Reduce the fraction \frac{5780000}{2295} to lowest terms by extracting and canceling out 85.
-278c+27800-c\times \frac{68000}{27}=0
Subtract c\times \frac{68000}{27} from both sides.
-\frac{75506}{27}c+27800=0
Combine -278c and -c\times \frac{68000}{27} to get -\frac{75506}{27}c.
-\frac{75506}{27}c=-27800
Subtract 27800 from both sides. Anything subtracted from zero gives its negation.
c=-27800\left(-\frac{27}{75506}\right)
Multiply both sides by -\frac{27}{75506}, the reciprocal of -\frac{75506}{27}.
c=\frac{375300}{37753}
Multiply -27800 and -\frac{27}{75506} to get \frac{375300}{37753}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}