Evaluate
\frac{2757}{332}\approx 8.304216867
Factor
\frac{3 \cdot 919}{2 ^ {2} \cdot 83} = 8\frac{101}{332} = 8.30421686746988
Share
Copied to clipboard
\begin{array}{l}\phantom{332)}\phantom{1}\\332\overline{)2757}\\\end{array}
Use the 1^{st} digit 2 from dividend 2757
\begin{array}{l}\phantom{332)}0\phantom{2}\\332\overline{)2757}\\\end{array}
Since 2 is less than 332, use the next digit 7 from dividend 2757 and add 0 to the quotient
\begin{array}{l}\phantom{332)}0\phantom{3}\\332\overline{)2757}\\\end{array}
Use the 2^{nd} digit 7 from dividend 2757
\begin{array}{l}\phantom{332)}00\phantom{4}\\332\overline{)2757}\\\end{array}
Since 27 is less than 332, use the next digit 5 from dividend 2757 and add 0 to the quotient
\begin{array}{l}\phantom{332)}00\phantom{5}\\332\overline{)2757}\\\end{array}
Use the 3^{rd} digit 5 from dividend 2757
\begin{array}{l}\phantom{332)}000\phantom{6}\\332\overline{)2757}\\\end{array}
Since 275 is less than 332, use the next digit 7 from dividend 2757 and add 0 to the quotient
\begin{array}{l}\phantom{332)}000\phantom{7}\\332\overline{)2757}\\\end{array}
Use the 4^{th} digit 7 from dividend 2757
\begin{array}{l}\phantom{332)}0008\phantom{8}\\332\overline{)2757}\\\phantom{332)}\underline{\phantom{}2656\phantom{}}\\\phantom{332)9}101\\\end{array}
Find closest multiple of 332 to 2757. We see that 8 \times 332 = 2656 is the nearest. Now subtract 2656 from 2757 to get reminder 101. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }101
Since 101 is less than 332, stop the division. The reminder is 101. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}