Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-18x^{2}+60x+272=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-60±\sqrt{60^{2}-4\left(-18\right)\times 272}}{2\left(-18\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-60±\sqrt{3600-4\left(-18\right)\times 272}}{2\left(-18\right)}
Square 60.
x=\frac{-60±\sqrt{3600+72\times 272}}{2\left(-18\right)}
Multiply -4 times -18.
x=\frac{-60±\sqrt{3600+19584}}{2\left(-18\right)}
Multiply 72 times 272.
x=\frac{-60±\sqrt{23184}}{2\left(-18\right)}
Add 3600 to 19584.
x=\frac{-60±12\sqrt{161}}{2\left(-18\right)}
Take the square root of 23184.
x=\frac{-60±12\sqrt{161}}{-36}
Multiply 2 times -18.
x=\frac{12\sqrt{161}-60}{-36}
Now solve the equation x=\frac{-60±12\sqrt{161}}{-36} when ± is plus. Add -60 to 12\sqrt{161}.
x=\frac{5-\sqrt{161}}{3}
Divide -60+12\sqrt{161} by -36.
x=\frac{-12\sqrt{161}-60}{-36}
Now solve the equation x=\frac{-60±12\sqrt{161}}{-36} when ± is minus. Subtract 12\sqrt{161} from -60.
x=\frac{\sqrt{161}+5}{3}
Divide -60-12\sqrt{161} by -36.
-18x^{2}+60x+272=-18\left(x-\frac{5-\sqrt{161}}{3}\right)\left(x-\frac{\sqrt{161}+5}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5-\sqrt{161}}{3} for x_{1} and \frac{5+\sqrt{161}}{3} for x_{2}.