Evaluate
\frac{27}{5}=5.4
Factor
\frac{3 ^ {3}}{5} = 5\frac{2}{5} = 5.4
Share
Copied to clipboard
\begin{array}{l}\phantom{500)}\phantom{1}\\500\overline{)2700}\\\end{array}
Use the 1^{st} digit 2 from dividend 2700
\begin{array}{l}\phantom{500)}0\phantom{2}\\500\overline{)2700}\\\end{array}
Since 2 is less than 500, use the next digit 7 from dividend 2700 and add 0 to the quotient
\begin{array}{l}\phantom{500)}0\phantom{3}\\500\overline{)2700}\\\end{array}
Use the 2^{nd} digit 7 from dividend 2700
\begin{array}{l}\phantom{500)}00\phantom{4}\\500\overline{)2700}\\\end{array}
Since 27 is less than 500, use the next digit 0 from dividend 2700 and add 0 to the quotient
\begin{array}{l}\phantom{500)}00\phantom{5}\\500\overline{)2700}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2700
\begin{array}{l}\phantom{500)}000\phantom{6}\\500\overline{)2700}\\\end{array}
Since 270 is less than 500, use the next digit 0 from dividend 2700 and add 0 to the quotient
\begin{array}{l}\phantom{500)}000\phantom{7}\\500\overline{)2700}\\\end{array}
Use the 4^{th} digit 0 from dividend 2700
\begin{array}{l}\phantom{500)}0005\phantom{8}\\500\overline{)2700}\\\phantom{500)}\underline{\phantom{}2500\phantom{}}\\\phantom{500)9}200\\\end{array}
Find closest multiple of 500 to 2700. We see that 5 \times 500 = 2500 is the nearest. Now subtract 2500 from 2700 to get reminder 200. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }200
Since 200 is less than 500, stop the division. The reminder is 200. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}