Evaluate
\frac{15}{4}=3.75
Factor
\frac{3 \cdot 5}{2 ^ {2}} = 3\frac{3}{4} = 3.75
Share
Copied to clipboard
\begin{array}{l}\phantom{720)}\phantom{1}\\720\overline{)2700}\\\end{array}
Use the 1^{st} digit 2 from dividend 2700
\begin{array}{l}\phantom{720)}0\phantom{2}\\720\overline{)2700}\\\end{array}
Since 2 is less than 720, use the next digit 7 from dividend 2700 and add 0 to the quotient
\begin{array}{l}\phantom{720)}0\phantom{3}\\720\overline{)2700}\\\end{array}
Use the 2^{nd} digit 7 from dividend 2700
\begin{array}{l}\phantom{720)}00\phantom{4}\\720\overline{)2700}\\\end{array}
Since 27 is less than 720, use the next digit 0 from dividend 2700 and add 0 to the quotient
\begin{array}{l}\phantom{720)}00\phantom{5}\\720\overline{)2700}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2700
\begin{array}{l}\phantom{720)}000\phantom{6}\\720\overline{)2700}\\\end{array}
Since 270 is less than 720, use the next digit 0 from dividend 2700 and add 0 to the quotient
\begin{array}{l}\phantom{720)}000\phantom{7}\\720\overline{)2700}\\\end{array}
Use the 4^{th} digit 0 from dividend 2700
\begin{array}{l}\phantom{720)}0003\phantom{8}\\720\overline{)2700}\\\phantom{720)}\underline{\phantom{}2160\phantom{}}\\\phantom{720)9}540\\\end{array}
Find closest multiple of 720 to 2700. We see that 3 \times 720 = 2160 is the nearest. Now subtract 2160 from 2700 to get reminder 540. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }540
Since 540 is less than 720, stop the division. The reminder is 540. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}