Solve for x
x=12
x=13
Graph
Share
Copied to clipboard
25x-x^{2}+54=210
Combine 27x and -2x to get 25x.
25x-x^{2}+54-210=0
Subtract 210 from both sides.
25x-x^{2}-156=0
Subtract 210 from 54 to get -156.
-x^{2}+25x-156=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=25 ab=-\left(-156\right)=156
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-156. To find a and b, set up a system to be solved.
1,156 2,78 3,52 4,39 6,26 12,13
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 156.
1+156=157 2+78=80 3+52=55 4+39=43 6+26=32 12+13=25
Calculate the sum for each pair.
a=13 b=12
The solution is the pair that gives sum 25.
\left(-x^{2}+13x\right)+\left(12x-156\right)
Rewrite -x^{2}+25x-156 as \left(-x^{2}+13x\right)+\left(12x-156\right).
-x\left(x-13\right)+12\left(x-13\right)
Factor out -x in the first and 12 in the second group.
\left(x-13\right)\left(-x+12\right)
Factor out common term x-13 by using distributive property.
x=13 x=12
To find equation solutions, solve x-13=0 and -x+12=0.
25x-x^{2}+54=210
Combine 27x and -2x to get 25x.
25x-x^{2}+54-210=0
Subtract 210 from both sides.
25x-x^{2}-156=0
Subtract 210 from 54 to get -156.
-x^{2}+25x-156=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25±\sqrt{25^{2}-4\left(-1\right)\left(-156\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 25 for b, and -156 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\left(-1\right)\left(-156\right)}}{2\left(-1\right)}
Square 25.
x=\frac{-25±\sqrt{625+4\left(-156\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-25±\sqrt{625-624}}{2\left(-1\right)}
Multiply 4 times -156.
x=\frac{-25±\sqrt{1}}{2\left(-1\right)}
Add 625 to -624.
x=\frac{-25±1}{2\left(-1\right)}
Take the square root of 1.
x=\frac{-25±1}{-2}
Multiply 2 times -1.
x=-\frac{24}{-2}
Now solve the equation x=\frac{-25±1}{-2} when ± is plus. Add -25 to 1.
x=12
Divide -24 by -2.
x=-\frac{26}{-2}
Now solve the equation x=\frac{-25±1}{-2} when ± is minus. Subtract 1 from -25.
x=13
Divide -26 by -2.
x=12 x=13
The equation is now solved.
25x-x^{2}+54=210
Combine 27x and -2x to get 25x.
25x-x^{2}=210-54
Subtract 54 from both sides.
25x-x^{2}=156
Subtract 54 from 210 to get 156.
-x^{2}+25x=156
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+25x}{-1}=\frac{156}{-1}
Divide both sides by -1.
x^{2}+\frac{25}{-1}x=\frac{156}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-25x=\frac{156}{-1}
Divide 25 by -1.
x^{2}-25x=-156
Divide 156 by -1.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=-156+\left(-\frac{25}{2}\right)^{2}
Divide -25, the coefficient of the x term, by 2 to get -\frac{25}{2}. Then add the square of -\frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-25x+\frac{625}{4}=-156+\frac{625}{4}
Square -\frac{25}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-25x+\frac{625}{4}=\frac{1}{4}
Add -156 to \frac{625}{4}.
\left(x-\frac{25}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-25x+\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{25}{2}=\frac{1}{2} x-\frac{25}{2}=-\frac{1}{2}
Simplify.
x=13 x=12
Add \frac{25}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}