Solve for m
m=-\frac{\sqrt{7}}{3}\approx -0.881917104
m=\frac{\sqrt{7}}{3}\approx 0.881917104
m=\frac{\sqrt{3}}{3}\approx 0.577350269
m=-\frac{\sqrt{3}}{3}\approx -0.577350269
Share
Copied to clipboard
27t^{2}-30t+7=0
Substitute t for m^{2}.
t=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 27\times 7}}{2\times 27}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 27 for a, -30 for b, and 7 for c in the quadratic formula.
t=\frac{30±12}{54}
Do the calculations.
t=\frac{7}{9} t=\frac{1}{3}
Solve the equation t=\frac{30±12}{54} when ± is plus and when ± is minus.
m=\frac{\sqrt{7}}{3} m=-\frac{\sqrt{7}}{3} m=\frac{\sqrt{3}}{3} m=-\frac{\sqrt{3}}{3}
Since m=t^{2}, the solutions are obtained by evaluating m=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}