Solve for x (complex solution)
x = \frac{7}{6} = 1\frac{1}{6} \approx 1.166666667
x=\frac{\sqrt{3}i}{3}+\frac{1}{6}\approx 0.166666667+0.577350269i
x=-\frac{\sqrt{3}i}{3}+\frac{1}{6}\approx 0.166666667-0.577350269i
Solve for x
x = \frac{7}{6} = 1\frac{1}{6} \approx 1.166666667
Graph
Share
Copied to clipboard
27\left(8x^{3}-12x^{2}+6x-1\right)+2=66
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(2x-1\right)^{3}.
216x^{3}-324x^{2}+162x-27+2=66
Use the distributive property to multiply 27 by 8x^{3}-12x^{2}+6x-1.
216x^{3}-324x^{2}+162x-25=66
Add -27 and 2 to get -25.
216x^{3}-324x^{2}+162x-25-66=0
Subtract 66 from both sides.
216x^{3}-324x^{2}+162x-91=0
Subtract 66 from -25 to get -91.
±\frac{91}{216},±\frac{91}{108},±\frac{91}{72},±\frac{91}{54},±\frac{91}{36},±\frac{91}{27},±\frac{91}{24},±\frac{91}{18},±\frac{91}{12},±\frac{91}{9},±\frac{91}{8},±\frac{91}{6},±\frac{91}{4},±\frac{91}{3},±\frac{91}{2},±91,±\frac{13}{216},±\frac{13}{108},±\frac{13}{72},±\frac{13}{54},±\frac{13}{36},±\frac{13}{27},±\frac{13}{24},±\frac{13}{18},±\frac{13}{12},±\frac{13}{9},±\frac{13}{8},±\frac{13}{6},±\frac{13}{4},±\frac{13}{3},±\frac{13}{2},±13,±\frac{7}{216},±\frac{7}{108},±\frac{7}{72},±\frac{7}{54},±\frac{7}{36},±\frac{7}{27},±\frac{7}{24},±\frac{7}{18},±\frac{7}{12},±\frac{7}{9},±\frac{7}{8},±\frac{7}{6},±\frac{7}{4},±\frac{7}{3},±\frac{7}{2},±7,±\frac{1}{216},±\frac{1}{108},±\frac{1}{72},±\frac{1}{54},±\frac{1}{36},±\frac{1}{27},±\frac{1}{24},±\frac{1}{18},±\frac{1}{12},±\frac{1}{9},±\frac{1}{8},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -91 and q divides the leading coefficient 216. List all candidates \frac{p}{q}.
x=\frac{7}{6}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
36x^{2}-12x+13=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 216x^{3}-324x^{2}+162x-91 by 6\left(x-\frac{7}{6}\right)=6x-7 to get 36x^{2}-12x+13. Solve the equation where the result equals to 0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 36\times 13}}{2\times 36}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 36 for a, -12 for b, and 13 for c in the quadratic formula.
x=\frac{12±\sqrt{-1728}}{72}
Do the calculations.
x=-\frac{\sqrt{3}i}{3}+\frac{1}{6} x=\frac{\sqrt{3}i}{3}+\frac{1}{6}
Solve the equation 36x^{2}-12x+13=0 when ± is plus and when ± is minus.
x=\frac{7}{6} x=-\frac{\sqrt{3}i}{3}+\frac{1}{6} x=\frac{\sqrt{3}i}{3}+\frac{1}{6}
List all found solutions.
27\left(8x^{3}-12x^{2}+6x-1\right)+2=66
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(2x-1\right)^{3}.
216x^{3}-324x^{2}+162x-27+2=66
Use the distributive property to multiply 27 by 8x^{3}-12x^{2}+6x-1.
216x^{3}-324x^{2}+162x-25=66
Add -27 and 2 to get -25.
216x^{3}-324x^{2}+162x-25-66=0
Subtract 66 from both sides.
216x^{3}-324x^{2}+162x-91=0
Subtract 66 from -25 to get -91.
±\frac{91}{216},±\frac{91}{108},±\frac{91}{72},±\frac{91}{54},±\frac{91}{36},±\frac{91}{27},±\frac{91}{24},±\frac{91}{18},±\frac{91}{12},±\frac{91}{9},±\frac{91}{8},±\frac{91}{6},±\frac{91}{4},±\frac{91}{3},±\frac{91}{2},±91,±\frac{13}{216},±\frac{13}{108},±\frac{13}{72},±\frac{13}{54},±\frac{13}{36},±\frac{13}{27},±\frac{13}{24},±\frac{13}{18},±\frac{13}{12},±\frac{13}{9},±\frac{13}{8},±\frac{13}{6},±\frac{13}{4},±\frac{13}{3},±\frac{13}{2},±13,±\frac{7}{216},±\frac{7}{108},±\frac{7}{72},±\frac{7}{54},±\frac{7}{36},±\frac{7}{27},±\frac{7}{24},±\frac{7}{18},±\frac{7}{12},±\frac{7}{9},±\frac{7}{8},±\frac{7}{6},±\frac{7}{4},±\frac{7}{3},±\frac{7}{2},±7,±\frac{1}{216},±\frac{1}{108},±\frac{1}{72},±\frac{1}{54},±\frac{1}{36},±\frac{1}{27},±\frac{1}{24},±\frac{1}{18},±\frac{1}{12},±\frac{1}{9},±\frac{1}{8},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -91 and q divides the leading coefficient 216. List all candidates \frac{p}{q}.
x=\frac{7}{6}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
36x^{2}-12x+13=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 216x^{3}-324x^{2}+162x-91 by 6\left(x-\frac{7}{6}\right)=6x-7 to get 36x^{2}-12x+13. Solve the equation where the result equals to 0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 36\times 13}}{2\times 36}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 36 for a, -12 for b, and 13 for c in the quadratic formula.
x=\frac{12±\sqrt{-1728}}{72}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=\frac{7}{6}
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}