Evaluate
\frac{133}{30}\approx 4.433333333
Factor
\frac{7 \cdot 19}{2 \cdot 3 \cdot 5} = 4\frac{13}{30} = 4.433333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)266}\\\end{array}
Use the 1^{st} digit 2 from dividend 266
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)266}\\\end{array}
Since 2 is less than 60, use the next digit 6 from dividend 266 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)266}\\\end{array}
Use the 2^{nd} digit 6 from dividend 266
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)266}\\\end{array}
Since 26 is less than 60, use the next digit 6 from dividend 266 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)266}\\\end{array}
Use the 3^{rd} digit 6 from dividend 266
\begin{array}{l}\phantom{60)}004\phantom{6}\\60\overline{)266}\\\phantom{60)}\underline{\phantom{}240\phantom{}}\\\phantom{60)9}26\\\end{array}
Find closest multiple of 60 to 266. We see that 4 \times 60 = 240 is the nearest. Now subtract 240 from 266 to get reminder 26. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }26
Since 26 is less than 60, stop the division. The reminder is 26. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}