Evaluate
\frac{262}{15}\approx 17.466666667
Factor
\frac{2 \cdot 131}{3 \cdot 5} = 17\frac{7}{15} = 17.466666666666665
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)262}\\\end{array}
Use the 1^{st} digit 2 from dividend 262
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)262}\\\end{array}
Since 2 is less than 15, use the next digit 6 from dividend 262 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)262}\\\end{array}
Use the 2^{nd} digit 6 from dividend 262
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)262}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}11\\\end{array}
Find closest multiple of 15 to 26. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 26 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)262}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}112\\\end{array}
Use the 3^{rd} digit 2 from dividend 262
\begin{array}{l}\phantom{15)}017\phantom{6}\\15\overline{)262}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}112\\\phantom{15)}\underline{\phantom{}105\phantom{}}\\\phantom{15)99}7\\\end{array}
Find closest multiple of 15 to 112. We see that 7 \times 15 = 105 is the nearest. Now subtract 105 from 112 to get reminder 7. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }7
Since 7 is less than 15, stop the division. The reminder is 7. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}