Evaluate
\frac{26}{19}\approx 1.368421053
Factor
\frac{2 \cdot 13}{19} = 1\frac{7}{19} = 1.368421052631579
Share
Copied to clipboard
\begin{array}{l}\phantom{1900)}\phantom{1}\\1900\overline{)2600}\\\end{array}
Use the 1^{st} digit 2 from dividend 2600
\begin{array}{l}\phantom{1900)}0\phantom{2}\\1900\overline{)2600}\\\end{array}
Since 2 is less than 1900, use the next digit 6 from dividend 2600 and add 0 to the quotient
\begin{array}{l}\phantom{1900)}0\phantom{3}\\1900\overline{)2600}\\\end{array}
Use the 2^{nd} digit 6 from dividend 2600
\begin{array}{l}\phantom{1900)}00\phantom{4}\\1900\overline{)2600}\\\end{array}
Since 26 is less than 1900, use the next digit 0 from dividend 2600 and add 0 to the quotient
\begin{array}{l}\phantom{1900)}00\phantom{5}\\1900\overline{)2600}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2600
\begin{array}{l}\phantom{1900)}000\phantom{6}\\1900\overline{)2600}\\\end{array}
Since 260 is less than 1900, use the next digit 0 from dividend 2600 and add 0 to the quotient
\begin{array}{l}\phantom{1900)}000\phantom{7}\\1900\overline{)2600}\\\end{array}
Use the 4^{th} digit 0 from dividend 2600
\begin{array}{l}\phantom{1900)}0001\phantom{8}\\1900\overline{)2600}\\\phantom{1900)}\underline{\phantom{}1900\phantom{}}\\\phantom{1900)9}700\\\end{array}
Find closest multiple of 1900 to 2600. We see that 1 \times 1900 = 1900 is the nearest. Now subtract 1900 from 2600 to get reminder 700. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }700
Since 700 is less than 1900, stop the division. The reminder is 700. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}