Solve for s
s = \frac{\sqrt{3809}}{26} \approx 2.373734481
s = -\frac{\sqrt{3809}}{26} \approx -2.373734481
Share
Copied to clipboard
260s^{2}-1465=0
Add -1705 and 240 to get -1465.
260s^{2}=1465
Add 1465 to both sides. Anything plus zero gives itself.
s^{2}=\frac{1465}{260}
Divide both sides by 260.
s^{2}=\frac{293}{52}
Reduce the fraction \frac{1465}{260} to lowest terms by extracting and canceling out 5.
s=\frac{\sqrt{3809}}{26} s=-\frac{\sqrt{3809}}{26}
Take the square root of both sides of the equation.
260s^{2}-1465=0
Add -1705 and 240 to get -1465.
s=\frac{0±\sqrt{0^{2}-4\times 260\left(-1465\right)}}{2\times 260}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 260 for a, 0 for b, and -1465 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{0±\sqrt{-4\times 260\left(-1465\right)}}{2\times 260}
Square 0.
s=\frac{0±\sqrt{-1040\left(-1465\right)}}{2\times 260}
Multiply -4 times 260.
s=\frac{0±\sqrt{1523600}}{2\times 260}
Multiply -1040 times -1465.
s=\frac{0±20\sqrt{3809}}{2\times 260}
Take the square root of 1523600.
s=\frac{0±20\sqrt{3809}}{520}
Multiply 2 times 260.
s=\frac{\sqrt{3809}}{26}
Now solve the equation s=\frac{0±20\sqrt{3809}}{520} when ± is plus.
s=-\frac{\sqrt{3809}}{26}
Now solve the equation s=\frac{0±20\sqrt{3809}}{520} when ± is minus.
s=\frac{\sqrt{3809}}{26} s=-\frac{\sqrt{3809}}{26}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}