Solve for n
n = \frac{\sqrt{5854} + 2}{13} \approx 6.039341312
n=\frac{2-\sqrt{5854}}{13}\approx -5.731649004
Share
Copied to clipboard
26n^{2}-8n-900=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 26\left(-900\right)}}{2\times 26}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 26 for a, -8 for b, and -900 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-8\right)±\sqrt{64-4\times 26\left(-900\right)}}{2\times 26}
Square -8.
n=\frac{-\left(-8\right)±\sqrt{64-104\left(-900\right)}}{2\times 26}
Multiply -4 times 26.
n=\frac{-\left(-8\right)±\sqrt{64+93600}}{2\times 26}
Multiply -104 times -900.
n=\frac{-\left(-8\right)±\sqrt{93664}}{2\times 26}
Add 64 to 93600.
n=\frac{-\left(-8\right)±4\sqrt{5854}}{2\times 26}
Take the square root of 93664.
n=\frac{8±4\sqrt{5854}}{2\times 26}
The opposite of -8 is 8.
n=\frac{8±4\sqrt{5854}}{52}
Multiply 2 times 26.
n=\frac{4\sqrt{5854}+8}{52}
Now solve the equation n=\frac{8±4\sqrt{5854}}{52} when ± is plus. Add 8 to 4\sqrt{5854}.
n=\frac{\sqrt{5854}+2}{13}
Divide 8+4\sqrt{5854} by 52.
n=\frac{8-4\sqrt{5854}}{52}
Now solve the equation n=\frac{8±4\sqrt{5854}}{52} when ± is minus. Subtract 4\sqrt{5854} from 8.
n=\frac{2-\sqrt{5854}}{13}
Divide 8-4\sqrt{5854} by 52.
n=\frac{\sqrt{5854}+2}{13} n=\frac{2-\sqrt{5854}}{13}
The equation is now solved.
26n^{2}-8n-900=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
26n^{2}-8n-900-\left(-900\right)=-\left(-900\right)
Add 900 to both sides of the equation.
26n^{2}-8n=-\left(-900\right)
Subtracting -900 from itself leaves 0.
26n^{2}-8n=900
Subtract -900 from 0.
\frac{26n^{2}-8n}{26}=\frac{900}{26}
Divide both sides by 26.
n^{2}+\left(-\frac{8}{26}\right)n=\frac{900}{26}
Dividing by 26 undoes the multiplication by 26.
n^{2}-\frac{4}{13}n=\frac{900}{26}
Reduce the fraction \frac{-8}{26} to lowest terms by extracting and canceling out 2.
n^{2}-\frac{4}{13}n=\frac{450}{13}
Reduce the fraction \frac{900}{26} to lowest terms by extracting and canceling out 2.
n^{2}-\frac{4}{13}n+\left(-\frac{2}{13}\right)^{2}=\frac{450}{13}+\left(-\frac{2}{13}\right)^{2}
Divide -\frac{4}{13}, the coefficient of the x term, by 2 to get -\frac{2}{13}. Then add the square of -\frac{2}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{4}{13}n+\frac{4}{169}=\frac{450}{13}+\frac{4}{169}
Square -\frac{2}{13} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{4}{13}n+\frac{4}{169}=\frac{5854}{169}
Add \frac{450}{13} to \frac{4}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{2}{13}\right)^{2}=\frac{5854}{169}
Factor n^{2}-\frac{4}{13}n+\frac{4}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{2}{13}\right)^{2}}=\sqrt{\frac{5854}{169}}
Take the square root of both sides of the equation.
n-\frac{2}{13}=\frac{\sqrt{5854}}{13} n-\frac{2}{13}=-\frac{\sqrt{5854}}{13}
Simplify.
n=\frac{\sqrt{5854}+2}{13} n=\frac{2-\sqrt{5854}}{13}
Add \frac{2}{13} to both sides of the equation.
x ^ 2 -\frac{4}{13}x -\frac{450}{13} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 26
r + s = \frac{4}{13} rs = -\frac{450}{13}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{2}{13} - u s = \frac{2}{13} + u
Two numbers r and s sum up to \frac{4}{13} exactly when the average of the two numbers is \frac{1}{2}*\frac{4}{13} = \frac{2}{13}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{2}{13} - u) (\frac{2}{13} + u) = -\frac{450}{13}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{450}{13}
\frac{4}{169} - u^2 = -\frac{450}{13}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{450}{13}-\frac{4}{169} = -\frac{5854}{169}
Simplify the expression by subtracting \frac{4}{169} on both sides
u^2 = \frac{5854}{169} u = \pm\sqrt{\frac{5854}{169}} = \pm \frac{\sqrt{5854}}{13}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{2}{13} - \frac{\sqrt{5854}}{13} = -5.732 s = \frac{2}{13} + \frac{\sqrt{5854}}{13} = 6.039
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}