Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x+7000x-35x^{2}=6280
Use the distributive property to multiply 35x by 200-x.
7025x-35x^{2}=6280
Combine 25x and 7000x to get 7025x.
7025x-35x^{2}-6280=0
Subtract 6280 from both sides.
-35x^{2}+7025x-6280=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7025±\sqrt{7025^{2}-4\left(-35\right)\left(-6280\right)}}{2\left(-35\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -35 for a, 7025 for b, and -6280 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7025±\sqrt{49350625-4\left(-35\right)\left(-6280\right)}}{2\left(-35\right)}
Square 7025.
x=\frac{-7025±\sqrt{49350625+140\left(-6280\right)}}{2\left(-35\right)}
Multiply -4 times -35.
x=\frac{-7025±\sqrt{49350625-879200}}{2\left(-35\right)}
Multiply 140 times -6280.
x=\frac{-7025±\sqrt{48471425}}{2\left(-35\right)}
Add 49350625 to -879200.
x=\frac{-7025±5\sqrt{1938857}}{2\left(-35\right)}
Take the square root of 48471425.
x=\frac{-7025±5\sqrt{1938857}}{-70}
Multiply 2 times -35.
x=\frac{5\sqrt{1938857}-7025}{-70}
Now solve the equation x=\frac{-7025±5\sqrt{1938857}}{-70} when ± is plus. Add -7025 to 5\sqrt{1938857}.
x=\frac{1405-\sqrt{1938857}}{14}
Divide -7025+5\sqrt{1938857} by -70.
x=\frac{-5\sqrt{1938857}-7025}{-70}
Now solve the equation x=\frac{-7025±5\sqrt{1938857}}{-70} when ± is minus. Subtract 5\sqrt{1938857} from -7025.
x=\frac{\sqrt{1938857}+1405}{14}
Divide -7025-5\sqrt{1938857} by -70.
x=\frac{1405-\sqrt{1938857}}{14} x=\frac{\sqrt{1938857}+1405}{14}
The equation is now solved.
25x+7000x-35x^{2}=6280
Use the distributive property to multiply 35x by 200-x.
7025x-35x^{2}=6280
Combine 25x and 7000x to get 7025x.
-35x^{2}+7025x=6280
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-35x^{2}+7025x}{-35}=\frac{6280}{-35}
Divide both sides by -35.
x^{2}+\frac{7025}{-35}x=\frac{6280}{-35}
Dividing by -35 undoes the multiplication by -35.
x^{2}-\frac{1405}{7}x=\frac{6280}{-35}
Reduce the fraction \frac{7025}{-35} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{1405}{7}x=-\frac{1256}{7}
Reduce the fraction \frac{6280}{-35} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{1405}{7}x+\left(-\frac{1405}{14}\right)^{2}=-\frac{1256}{7}+\left(-\frac{1405}{14}\right)^{2}
Divide -\frac{1405}{7}, the coefficient of the x term, by 2 to get -\frac{1405}{14}. Then add the square of -\frac{1405}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1405}{7}x+\frac{1974025}{196}=-\frac{1256}{7}+\frac{1974025}{196}
Square -\frac{1405}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1405}{7}x+\frac{1974025}{196}=\frac{1938857}{196}
Add -\frac{1256}{7} to \frac{1974025}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1405}{14}\right)^{2}=\frac{1938857}{196}
Factor x^{2}-\frac{1405}{7}x+\frac{1974025}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1405}{14}\right)^{2}}=\sqrt{\frac{1938857}{196}}
Take the square root of both sides of the equation.
x-\frac{1405}{14}=\frac{\sqrt{1938857}}{14} x-\frac{1405}{14}=-\frac{\sqrt{1938857}}{14}
Simplify.
x=\frac{\sqrt{1938857}+1405}{14} x=\frac{1405-\sqrt{1938857}}{14}
Add \frac{1405}{14} to both sides of the equation.