Evaluate
\frac{259}{18}\approx 14.388888889
Factor
\frac{7 \cdot 37}{2 \cdot 3 ^ {2}} = 14\frac{7}{18} = 14.38888888888889
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)259}\\\end{array}
Use the 1^{st} digit 2 from dividend 259
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)259}\\\end{array}
Since 2 is less than 18, use the next digit 5 from dividend 259 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)259}\\\end{array}
Use the 2^{nd} digit 5 from dividend 259
\begin{array}{l}\phantom{18)}01\phantom{4}\\18\overline{)259}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)9}7\\\end{array}
Find closest multiple of 18 to 25. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 25 to get reminder 7. Add 1 to quotient.
\begin{array}{l}\phantom{18)}01\phantom{5}\\18\overline{)259}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)9}79\\\end{array}
Use the 3^{rd} digit 9 from dividend 259
\begin{array}{l}\phantom{18)}014\phantom{6}\\18\overline{)259}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)9}79\\\phantom{18)}\underline{\phantom{9}72\phantom{}}\\\phantom{18)99}7\\\end{array}
Find closest multiple of 18 to 79. We see that 4 \times 18 = 72 is the nearest. Now subtract 72 from 79 to get reminder 7. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }7
Since 7 is less than 18, stop the division. The reminder is 7. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}