Evaluate
\frac{256178}{27}\approx 9488.074074074
Factor
\frac{2 \cdot 13 \cdot 59 \cdot 167}{3 ^ {3}} = 9488\frac{2}{27} = 9488.074074074075
Share
Copied to clipboard
\begin{array}{l}\phantom{27)}\phantom{1}\\27\overline{)256178}\\\end{array}
Use the 1^{st} digit 2 from dividend 256178
\begin{array}{l}\phantom{27)}0\phantom{2}\\27\overline{)256178}\\\end{array}
Since 2 is less than 27, use the next digit 5 from dividend 256178 and add 0 to the quotient
\begin{array}{l}\phantom{27)}0\phantom{3}\\27\overline{)256178}\\\end{array}
Use the 2^{nd} digit 5 from dividend 256178
\begin{array}{l}\phantom{27)}00\phantom{4}\\27\overline{)256178}\\\end{array}
Since 25 is less than 27, use the next digit 6 from dividend 256178 and add 0 to the quotient
\begin{array}{l}\phantom{27)}00\phantom{5}\\27\overline{)256178}\\\end{array}
Use the 3^{rd} digit 6 from dividend 256178
\begin{array}{l}\phantom{27)}009\phantom{6}\\27\overline{)256178}\\\phantom{27)}\underline{\phantom{}243\phantom{999}}\\\phantom{27)9}13\\\end{array}
Find closest multiple of 27 to 256. We see that 9 \times 27 = 243 is the nearest. Now subtract 243 from 256 to get reminder 13. Add 9 to quotient.
\begin{array}{l}\phantom{27)}009\phantom{7}\\27\overline{)256178}\\\phantom{27)}\underline{\phantom{}243\phantom{999}}\\\phantom{27)9}131\\\end{array}
Use the 4^{th} digit 1 from dividend 256178
\begin{array}{l}\phantom{27)}0094\phantom{8}\\27\overline{)256178}\\\phantom{27)}\underline{\phantom{}243\phantom{999}}\\\phantom{27)9}131\\\phantom{27)}\underline{\phantom{9}108\phantom{99}}\\\phantom{27)99}23\\\end{array}
Find closest multiple of 27 to 131. We see that 4 \times 27 = 108 is the nearest. Now subtract 108 from 131 to get reminder 23. Add 4 to quotient.
\begin{array}{l}\phantom{27)}0094\phantom{9}\\27\overline{)256178}\\\phantom{27)}\underline{\phantom{}243\phantom{999}}\\\phantom{27)9}131\\\phantom{27)}\underline{\phantom{9}108\phantom{99}}\\\phantom{27)99}237\\\end{array}
Use the 5^{th} digit 7 from dividend 256178
\begin{array}{l}\phantom{27)}00948\phantom{10}\\27\overline{)256178}\\\phantom{27)}\underline{\phantom{}243\phantom{999}}\\\phantom{27)9}131\\\phantom{27)}\underline{\phantom{9}108\phantom{99}}\\\phantom{27)99}237\\\phantom{27)}\underline{\phantom{99}216\phantom{9}}\\\phantom{27)999}21\\\end{array}
Find closest multiple of 27 to 237. We see that 8 \times 27 = 216 is the nearest. Now subtract 216 from 237 to get reminder 21. Add 8 to quotient.
\begin{array}{l}\phantom{27)}00948\phantom{11}\\27\overline{)256178}\\\phantom{27)}\underline{\phantom{}243\phantom{999}}\\\phantom{27)9}131\\\phantom{27)}\underline{\phantom{9}108\phantom{99}}\\\phantom{27)99}237\\\phantom{27)}\underline{\phantom{99}216\phantom{9}}\\\phantom{27)999}218\\\end{array}
Use the 6^{th} digit 8 from dividend 256178
\begin{array}{l}\phantom{27)}009488\phantom{12}\\27\overline{)256178}\\\phantom{27)}\underline{\phantom{}243\phantom{999}}\\\phantom{27)9}131\\\phantom{27)}\underline{\phantom{9}108\phantom{99}}\\\phantom{27)99}237\\\phantom{27)}\underline{\phantom{99}216\phantom{9}}\\\phantom{27)999}218\\\phantom{27)}\underline{\phantom{999}216\phantom{}}\\\phantom{27)99999}2\\\end{array}
Find closest multiple of 27 to 218. We see that 8 \times 27 = 216 is the nearest. Now subtract 216 from 218 to get reminder 2. Add 8 to quotient.
\text{Quotient: }9488 \text{Reminder: }2
Since 2 is less than 27, stop the division. The reminder is 2. The topmost line 009488 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9488.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}