Solve for x
x=-\frac{121y}{256}+\frac{13}{32}
Solve for y
y=\frac{104-256x}{121}
Graph
Share
Copied to clipboard
256x=104-121y
Subtract 121y from both sides.
\frac{256x}{256}=\frac{104-121y}{256}
Divide both sides by 256.
x=\frac{104-121y}{256}
Dividing by 256 undoes the multiplication by 256.
x=-\frac{121y}{256}+\frac{13}{32}
Divide 104-121y by 256.
121y=104-256x
Subtract 256x from both sides.
\frac{121y}{121}=\frac{104-256x}{121}
Divide both sides by 121.
y=\frac{104-256x}{121}
Dividing by 121 undoes the multiplication by 121.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}