Solve for x
x=\frac{2\sqrt{1021}+2}{85}\approx 0.775366838
x=\frac{2-2\sqrt{1021}}{85}\approx -0.728308015
Graph
Share
Copied to clipboard
256x^{2}=144+x^{2}-24x\left(-\frac{1}{2}\right)
Multiply 2 and 12 to get 24.
256x^{2}=144+x^{2}-\left(-12x\right)
Multiply 24 and -\frac{1}{2} to get -12.
256x^{2}=144+x^{2}+12x
The opposite of -12x is 12x.
256x^{2}-144=x^{2}+12x
Subtract 144 from both sides.
256x^{2}-144-x^{2}=12x
Subtract x^{2} from both sides.
255x^{2}-144=12x
Combine 256x^{2} and -x^{2} to get 255x^{2}.
255x^{2}-144-12x=0
Subtract 12x from both sides.
255x^{2}-12x-144=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 255\left(-144\right)}}{2\times 255}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 255 for a, -12 for b, and -144 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 255\left(-144\right)}}{2\times 255}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-1020\left(-144\right)}}{2\times 255}
Multiply -4 times 255.
x=\frac{-\left(-12\right)±\sqrt{144+146880}}{2\times 255}
Multiply -1020 times -144.
x=\frac{-\left(-12\right)±\sqrt{147024}}{2\times 255}
Add 144 to 146880.
x=\frac{-\left(-12\right)±12\sqrt{1021}}{2\times 255}
Take the square root of 147024.
x=\frac{12±12\sqrt{1021}}{2\times 255}
The opposite of -12 is 12.
x=\frac{12±12\sqrt{1021}}{510}
Multiply 2 times 255.
x=\frac{12\sqrt{1021}+12}{510}
Now solve the equation x=\frac{12±12\sqrt{1021}}{510} when ± is plus. Add 12 to 12\sqrt{1021}.
x=\frac{2\sqrt{1021}+2}{85}
Divide 12+12\sqrt{1021} by 510.
x=\frac{12-12\sqrt{1021}}{510}
Now solve the equation x=\frac{12±12\sqrt{1021}}{510} when ± is minus. Subtract 12\sqrt{1021} from 12.
x=\frac{2-2\sqrt{1021}}{85}
Divide 12-12\sqrt{1021} by 510.
x=\frac{2\sqrt{1021}+2}{85} x=\frac{2-2\sqrt{1021}}{85}
The equation is now solved.
256x^{2}=144+x^{2}-24x\left(-\frac{1}{2}\right)
Multiply 2 and 12 to get 24.
256x^{2}=144+x^{2}-\left(-12x\right)
Multiply 24 and -\frac{1}{2} to get -12.
256x^{2}=144+x^{2}+12x
The opposite of -12x is 12x.
256x^{2}-x^{2}=144+12x
Subtract x^{2} from both sides.
255x^{2}=144+12x
Combine 256x^{2} and -x^{2} to get 255x^{2}.
255x^{2}-12x=144
Subtract 12x from both sides.
\frac{255x^{2}-12x}{255}=\frac{144}{255}
Divide both sides by 255.
x^{2}+\left(-\frac{12}{255}\right)x=\frac{144}{255}
Dividing by 255 undoes the multiplication by 255.
x^{2}-\frac{4}{85}x=\frac{144}{255}
Reduce the fraction \frac{-12}{255} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{4}{85}x=\frac{48}{85}
Reduce the fraction \frac{144}{255} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{4}{85}x+\left(-\frac{2}{85}\right)^{2}=\frac{48}{85}+\left(-\frac{2}{85}\right)^{2}
Divide -\frac{4}{85}, the coefficient of the x term, by 2 to get -\frac{2}{85}. Then add the square of -\frac{2}{85} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{85}x+\frac{4}{7225}=\frac{48}{85}+\frac{4}{7225}
Square -\frac{2}{85} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{85}x+\frac{4}{7225}=\frac{4084}{7225}
Add \frac{48}{85} to \frac{4}{7225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{85}\right)^{2}=\frac{4084}{7225}
Factor x^{2}-\frac{4}{85}x+\frac{4}{7225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{85}\right)^{2}}=\sqrt{\frac{4084}{7225}}
Take the square root of both sides of the equation.
x-\frac{2}{85}=\frac{2\sqrt{1021}}{85} x-\frac{2}{85}=-\frac{2\sqrt{1021}}{85}
Simplify.
x=\frac{2\sqrt{1021}+2}{85} x=\frac{2-2\sqrt{1021}}{85}
Add \frac{2}{85} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}