Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

768t^{2}+1280t+396>0
Do the multiplications.
768t^{2}+1280t+396=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-1280±\sqrt{1280^{2}-4\times 768\times 396}}{2\times 768}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 768 for a, 1280 for b, and 396 for c in the quadratic formula.
t=\frac{-1280±64\sqrt{103}}{1536}
Do the calculations.
t=\frac{\sqrt{103}}{24}-\frac{5}{6} t=-\frac{\sqrt{103}}{24}-\frac{5}{6}
Solve the equation t=\frac{-1280±64\sqrt{103}}{1536} when ± is plus and when ± is minus.
768\left(t-\left(\frac{\sqrt{103}}{24}-\frac{5}{6}\right)\right)\left(t-\left(-\frac{\sqrt{103}}{24}-\frac{5}{6}\right)\right)>0
Rewrite the inequality by using the obtained solutions.
t-\left(\frac{\sqrt{103}}{24}-\frac{5}{6}\right)<0 t-\left(-\frac{\sqrt{103}}{24}-\frac{5}{6}\right)<0
For the product to be positive, t-\left(\frac{\sqrt{103}}{24}-\frac{5}{6}\right) and t-\left(-\frac{\sqrt{103}}{24}-\frac{5}{6}\right) have to be both negative or both positive. Consider the case when t-\left(\frac{\sqrt{103}}{24}-\frac{5}{6}\right) and t-\left(-\frac{\sqrt{103}}{24}-\frac{5}{6}\right) are both negative.
t<-\frac{\sqrt{103}}{24}-\frac{5}{6}
The solution satisfying both inequalities is t<-\frac{\sqrt{103}}{24}-\frac{5}{6}.
t-\left(-\frac{\sqrt{103}}{24}-\frac{5}{6}\right)>0 t-\left(\frac{\sqrt{103}}{24}-\frac{5}{6}\right)>0
Consider the case when t-\left(\frac{\sqrt{103}}{24}-\frac{5}{6}\right) and t-\left(-\frac{\sqrt{103}}{24}-\frac{5}{6}\right) are both positive.
t>\frac{\sqrt{103}}{24}-\frac{5}{6}
The solution satisfying both inequalities is t>\frac{\sqrt{103}}{24}-\frac{5}{6}.
t<-\frac{\sqrt{103}}{24}-\frac{5}{6}\text{; }t>\frac{\sqrt{103}}{24}-\frac{5}{6}
The final solution is the union of the obtained solutions.