Evaluate
\frac{64}{5}=12.8
Factor
\frac{2 ^ {6}}{5} = 12\frac{4}{5} = 12.8
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)256}\\\end{array}
Use the 1^{st} digit 2 from dividend 256
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)256}\\\end{array}
Since 2 is less than 20, use the next digit 5 from dividend 256 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)256}\\\end{array}
Use the 2^{nd} digit 5 from dividend 256
\begin{array}{l}\phantom{20)}01\phantom{4}\\20\overline{)256}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}5\\\end{array}
Find closest multiple of 20 to 25. We see that 1 \times 20 = 20 is the nearest. Now subtract 20 from 25 to get reminder 5. Add 1 to quotient.
\begin{array}{l}\phantom{20)}01\phantom{5}\\20\overline{)256}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}56\\\end{array}
Use the 3^{rd} digit 6 from dividend 256
\begin{array}{l}\phantom{20)}012\phantom{6}\\20\overline{)256}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}56\\\phantom{20)}\underline{\phantom{9}40\phantom{}}\\\phantom{20)9}16\\\end{array}
Find closest multiple of 20 to 56. We see that 2 \times 20 = 40 is the nearest. Now subtract 40 from 56 to get reminder 16. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }16
Since 16 is less than 20, stop the division. The reminder is 16. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}