Evaluate
\frac{64}{39}\approx 1.641025641
Factor
\frac{2 ^ {6}}{3 \cdot 13} = 1\frac{25}{39} = 1.641025641025641
Share
Copied to clipboard
\begin{array}{l}\phantom{156)}\phantom{1}\\156\overline{)256}\\\end{array}
Use the 1^{st} digit 2 from dividend 256
\begin{array}{l}\phantom{156)}0\phantom{2}\\156\overline{)256}\\\end{array}
Since 2 is less than 156, use the next digit 5 from dividend 256 and add 0 to the quotient
\begin{array}{l}\phantom{156)}0\phantom{3}\\156\overline{)256}\\\end{array}
Use the 2^{nd} digit 5 from dividend 256
\begin{array}{l}\phantom{156)}00\phantom{4}\\156\overline{)256}\\\end{array}
Since 25 is less than 156, use the next digit 6 from dividend 256 and add 0 to the quotient
\begin{array}{l}\phantom{156)}00\phantom{5}\\156\overline{)256}\\\end{array}
Use the 3^{rd} digit 6 from dividend 256
\begin{array}{l}\phantom{156)}001\phantom{6}\\156\overline{)256}\\\phantom{156)}\underline{\phantom{}156\phantom{}}\\\phantom{156)}100\\\end{array}
Find closest multiple of 156 to 256. We see that 1 \times 156 = 156 is the nearest. Now subtract 156 from 256 to get reminder 100. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }100
Since 100 is less than 156, stop the division. The reminder is 100. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}