Evaluate
\frac{128}{7}\approx 18.285714286
Factor
\frac{2 ^ {7}}{7} = 18\frac{2}{7} = 18.285714285714285
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)256}\\\end{array}
Use the 1^{st} digit 2 from dividend 256
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)256}\\\end{array}
Since 2 is less than 14, use the next digit 5 from dividend 256 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)256}\\\end{array}
Use the 2^{nd} digit 5 from dividend 256
\begin{array}{l}\phantom{14)}01\phantom{4}\\14\overline{)256}\\\phantom{14)}\underline{\phantom{}14\phantom{9}}\\\phantom{14)}11\\\end{array}
Find closest multiple of 14 to 25. We see that 1 \times 14 = 14 is the nearest. Now subtract 14 from 25 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{14)}01\phantom{5}\\14\overline{)256}\\\phantom{14)}\underline{\phantom{}14\phantom{9}}\\\phantom{14)}116\\\end{array}
Use the 3^{rd} digit 6 from dividend 256
\begin{array}{l}\phantom{14)}018\phantom{6}\\14\overline{)256}\\\phantom{14)}\underline{\phantom{}14\phantom{9}}\\\phantom{14)}116\\\phantom{14)}\underline{\phantom{}112\phantom{}}\\\phantom{14)99}4\\\end{array}
Find closest multiple of 14 to 116. We see that 8 \times 14 = 112 is the nearest. Now subtract 112 from 116 to get reminder 4. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }4
Since 4 is less than 14, stop the division. The reminder is 4. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}