Evaluate
\frac{256\sqrt{370}}{5}\approx 984.851663958
Share
Copied to clipboard
\frac{256}{\frac{\sqrt{5}}{\sqrt{74}}}
Rewrite the square root of the division \sqrt{\frac{5}{74}} as the division of square roots \frac{\sqrt{5}}{\sqrt{74}}.
\frac{256}{\frac{\sqrt{5}\sqrt{74}}{\left(\sqrt{74}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{74}} by multiplying numerator and denominator by \sqrt{74}.
\frac{256}{\frac{\sqrt{5}\sqrt{74}}{74}}
The square of \sqrt{74} is 74.
\frac{256}{\frac{\sqrt{370}}{74}}
To multiply \sqrt{5} and \sqrt{74}, multiply the numbers under the square root.
\frac{256\times 74}{\sqrt{370}}
Divide 256 by \frac{\sqrt{370}}{74} by multiplying 256 by the reciprocal of \frac{\sqrt{370}}{74}.
\frac{256\times 74\sqrt{370}}{\left(\sqrt{370}\right)^{2}}
Rationalize the denominator of \frac{256\times 74}{\sqrt{370}} by multiplying numerator and denominator by \sqrt{370}.
\frac{256\times 74\sqrt{370}}{370}
The square of \sqrt{370} is 370.
\frac{18944\sqrt{370}}{370}
Multiply 256 and 74 to get 18944.
\frac{256}{5}\sqrt{370}
Divide 18944\sqrt{370} by 370 to get \frac{256}{5}\sqrt{370}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}