Evaluate
\frac{14095}{4}=3523.75
Factor
\frac{5 \cdot 2819}{2 ^ {2}} = 3523\frac{3}{4} = 3523.75
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)253710}\\\end{array}
Use the 1^{st} digit 2 from dividend 253710
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)253710}\\\end{array}
Since 2 is less than 72, use the next digit 5 from dividend 253710 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)253710}\\\end{array}
Use the 2^{nd} digit 5 from dividend 253710
\begin{array}{l}\phantom{72)}00\phantom{4}\\72\overline{)253710}\\\end{array}
Since 25 is less than 72, use the next digit 3 from dividend 253710 and add 0 to the quotient
\begin{array}{l}\phantom{72)}00\phantom{5}\\72\overline{)253710}\\\end{array}
Use the 3^{rd} digit 3 from dividend 253710
\begin{array}{l}\phantom{72)}003\phantom{6}\\72\overline{)253710}\\\phantom{72)}\underline{\phantom{}216\phantom{999}}\\\phantom{72)9}37\\\end{array}
Find closest multiple of 72 to 253. We see that 3 \times 72 = 216 is the nearest. Now subtract 216 from 253 to get reminder 37. Add 3 to quotient.
\begin{array}{l}\phantom{72)}003\phantom{7}\\72\overline{)253710}\\\phantom{72)}\underline{\phantom{}216\phantom{999}}\\\phantom{72)9}377\\\end{array}
Use the 4^{th} digit 7 from dividend 253710
\begin{array}{l}\phantom{72)}0035\phantom{8}\\72\overline{)253710}\\\phantom{72)}\underline{\phantom{}216\phantom{999}}\\\phantom{72)9}377\\\phantom{72)}\underline{\phantom{9}360\phantom{99}}\\\phantom{72)99}17\\\end{array}
Find closest multiple of 72 to 377. We see that 5 \times 72 = 360 is the nearest. Now subtract 360 from 377 to get reminder 17. Add 5 to quotient.
\begin{array}{l}\phantom{72)}0035\phantom{9}\\72\overline{)253710}\\\phantom{72)}\underline{\phantom{}216\phantom{999}}\\\phantom{72)9}377\\\phantom{72)}\underline{\phantom{9}360\phantom{99}}\\\phantom{72)99}171\\\end{array}
Use the 5^{th} digit 1 from dividend 253710
\begin{array}{l}\phantom{72)}00352\phantom{10}\\72\overline{)253710}\\\phantom{72)}\underline{\phantom{}216\phantom{999}}\\\phantom{72)9}377\\\phantom{72)}\underline{\phantom{9}360\phantom{99}}\\\phantom{72)99}171\\\phantom{72)}\underline{\phantom{99}144\phantom{9}}\\\phantom{72)999}27\\\end{array}
Find closest multiple of 72 to 171. We see that 2 \times 72 = 144 is the nearest. Now subtract 144 from 171 to get reminder 27. Add 2 to quotient.
\begin{array}{l}\phantom{72)}00352\phantom{11}\\72\overline{)253710}\\\phantom{72)}\underline{\phantom{}216\phantom{999}}\\\phantom{72)9}377\\\phantom{72)}\underline{\phantom{9}360\phantom{99}}\\\phantom{72)99}171\\\phantom{72)}\underline{\phantom{99}144\phantom{9}}\\\phantom{72)999}270\\\end{array}
Use the 6^{th} digit 0 from dividend 253710
\begin{array}{l}\phantom{72)}003523\phantom{12}\\72\overline{)253710}\\\phantom{72)}\underline{\phantom{}216\phantom{999}}\\\phantom{72)9}377\\\phantom{72)}\underline{\phantom{9}360\phantom{99}}\\\phantom{72)99}171\\\phantom{72)}\underline{\phantom{99}144\phantom{9}}\\\phantom{72)999}270\\\phantom{72)}\underline{\phantom{999}216\phantom{}}\\\phantom{72)9999}54\\\end{array}
Find closest multiple of 72 to 270. We see that 3 \times 72 = 216 is the nearest. Now subtract 216 from 270 to get reminder 54. Add 3 to quotient.
\text{Quotient: }3523 \text{Reminder: }54
Since 54 is less than 72, stop the division. The reminder is 54. The topmost line 003523 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3523.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}