Evaluate
\frac{63}{10}=6.3
Factor
\frac{3 ^ {2} \cdot 7}{2 \cdot 5} = 6\frac{3}{10} = 6.3
Share
Copied to clipboard
\begin{array}{l}\phantom{400)}\phantom{1}\\400\overline{)2520}\\\end{array}
Use the 1^{st} digit 2 from dividend 2520
\begin{array}{l}\phantom{400)}0\phantom{2}\\400\overline{)2520}\\\end{array}
Since 2 is less than 400, use the next digit 5 from dividend 2520 and add 0 to the quotient
\begin{array}{l}\phantom{400)}0\phantom{3}\\400\overline{)2520}\\\end{array}
Use the 2^{nd} digit 5 from dividend 2520
\begin{array}{l}\phantom{400)}00\phantom{4}\\400\overline{)2520}\\\end{array}
Since 25 is less than 400, use the next digit 2 from dividend 2520 and add 0 to the quotient
\begin{array}{l}\phantom{400)}00\phantom{5}\\400\overline{)2520}\\\end{array}
Use the 3^{rd} digit 2 from dividend 2520
\begin{array}{l}\phantom{400)}000\phantom{6}\\400\overline{)2520}\\\end{array}
Since 252 is less than 400, use the next digit 0 from dividend 2520 and add 0 to the quotient
\begin{array}{l}\phantom{400)}000\phantom{7}\\400\overline{)2520}\\\end{array}
Use the 4^{th} digit 0 from dividend 2520
\begin{array}{l}\phantom{400)}0006\phantom{8}\\400\overline{)2520}\\\phantom{400)}\underline{\phantom{}2400\phantom{}}\\\phantom{400)9}120\\\end{array}
Find closest multiple of 400 to 2520. We see that 6 \times 400 = 2400 is the nearest. Now subtract 2400 from 2520 to get reminder 120. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }120
Since 120 is less than 400, stop the division. The reminder is 120. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}