Solve for x
x=\log_{5}\left(4000\right)\approx 5.15338279
Solve for x (complex solution)
x=-\frac{2\pi n_{1}i}{\ln(5)}+5\log_{5}\left(2\right)+3
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
25000=100000000\times 5^{-x}
Calculate 10 to the power of 8 and get 100000000.
100000000\times 5^{-x}=25000
Swap sides so that all variable terms are on the left hand side.
5^{-x}=\frac{25000}{100000000}
Divide both sides by 100000000.
5^{-x}=\frac{1}{4000}
Reduce the fraction \frac{25000}{100000000} to lowest terms by extracting and canceling out 25000.
\log(5^{-x})=\log(\frac{1}{4000})
Take the logarithm of both sides of the equation.
-x\log(5)=\log(\frac{1}{4000})
The logarithm of a number raised to a power is the power times the logarithm of the number.
-x=\frac{\log(\frac{1}{4000})}{\log(5)}
Divide both sides by \log(5).
-x=\log_{5}\left(\frac{1}{4000}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=-\frac{\log_{5}\left(4000\right)}{-1}
Divide both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}