Solve for x
x=12
x=-18
Graph
Share
Copied to clipboard
2500=1600+\left(6+2x\right)^{2}
Combine x and x to get 2x.
2500=1600+36+24x+4x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6+2x\right)^{2}.
2500=1636+24x+4x^{2}
Add 1600 and 36 to get 1636.
1636+24x+4x^{2}=2500
Swap sides so that all variable terms are on the left hand side.
1636+24x+4x^{2}-2500=0
Subtract 2500 from both sides.
-864+24x+4x^{2}=0
Subtract 2500 from 1636 to get -864.
-216+6x+x^{2}=0
Divide both sides by 4.
x^{2}+6x-216=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=6 ab=1\left(-216\right)=-216
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-216. To find a and b, set up a system to be solved.
-1,216 -2,108 -3,72 -4,54 -6,36 -8,27 -9,24 -12,18
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -216.
-1+216=215 -2+108=106 -3+72=69 -4+54=50 -6+36=30 -8+27=19 -9+24=15 -12+18=6
Calculate the sum for each pair.
a=-12 b=18
The solution is the pair that gives sum 6.
\left(x^{2}-12x\right)+\left(18x-216\right)
Rewrite x^{2}+6x-216 as \left(x^{2}-12x\right)+\left(18x-216\right).
x\left(x-12\right)+18\left(x-12\right)
Factor out x in the first and 18 in the second group.
\left(x-12\right)\left(x+18\right)
Factor out common term x-12 by using distributive property.
x=12 x=-18
To find equation solutions, solve x-12=0 and x+18=0.
2500=1600+\left(6+2x\right)^{2}
Combine x and x to get 2x.
2500=1600+36+24x+4x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6+2x\right)^{2}.
2500=1636+24x+4x^{2}
Add 1600 and 36 to get 1636.
1636+24x+4x^{2}=2500
Swap sides so that all variable terms are on the left hand side.
1636+24x+4x^{2}-2500=0
Subtract 2500 from both sides.
-864+24x+4x^{2}=0
Subtract 2500 from 1636 to get -864.
4x^{2}+24x-864=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-24±\sqrt{24^{2}-4\times 4\left(-864\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 24 for b, and -864 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\times 4\left(-864\right)}}{2\times 4}
Square 24.
x=\frac{-24±\sqrt{576-16\left(-864\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-24±\sqrt{576+13824}}{2\times 4}
Multiply -16 times -864.
x=\frac{-24±\sqrt{14400}}{2\times 4}
Add 576 to 13824.
x=\frac{-24±120}{2\times 4}
Take the square root of 14400.
x=\frac{-24±120}{8}
Multiply 2 times 4.
x=\frac{96}{8}
Now solve the equation x=\frac{-24±120}{8} when ± is plus. Add -24 to 120.
x=12
Divide 96 by 8.
x=-\frac{144}{8}
Now solve the equation x=\frac{-24±120}{8} when ± is minus. Subtract 120 from -24.
x=-18
Divide -144 by 8.
x=12 x=-18
The equation is now solved.
2500=1600+\left(6+2x\right)^{2}
Combine x and x to get 2x.
2500=1600+36+24x+4x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6+2x\right)^{2}.
2500=1636+24x+4x^{2}
Add 1600 and 36 to get 1636.
1636+24x+4x^{2}=2500
Swap sides so that all variable terms are on the left hand side.
24x+4x^{2}=2500-1636
Subtract 1636 from both sides.
24x+4x^{2}=864
Subtract 1636 from 2500 to get 864.
4x^{2}+24x=864
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+24x}{4}=\frac{864}{4}
Divide both sides by 4.
x^{2}+\frac{24}{4}x=\frac{864}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+6x=\frac{864}{4}
Divide 24 by 4.
x^{2}+6x=216
Divide 864 by 4.
x^{2}+6x+3^{2}=216+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=216+9
Square 3.
x^{2}+6x+9=225
Add 216 to 9.
\left(x+3\right)^{2}=225
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{225}
Take the square root of both sides of the equation.
x+3=15 x+3=-15
Simplify.
x=12 x=-18
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}