Solve for a
a=5
a=20
Share
Copied to clipboard
-100a^{2}+2500a=10000
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-100a^{2}+2500a-10000=10000-10000
Subtract 10000 from both sides of the equation.
-100a^{2}+2500a-10000=0
Subtracting 10000 from itself leaves 0.
a=\frac{-2500±\sqrt{2500^{2}-4\left(-100\right)\left(-10000\right)}}{2\left(-100\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -100 for a, 2500 for b, and -10000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-2500±\sqrt{6250000-4\left(-100\right)\left(-10000\right)}}{2\left(-100\right)}
Square 2500.
a=\frac{-2500±\sqrt{6250000+400\left(-10000\right)}}{2\left(-100\right)}
Multiply -4 times -100.
a=\frac{-2500±\sqrt{6250000-4000000}}{2\left(-100\right)}
Multiply 400 times -10000.
a=\frac{-2500±\sqrt{2250000}}{2\left(-100\right)}
Add 6250000 to -4000000.
a=\frac{-2500±1500}{2\left(-100\right)}
Take the square root of 2250000.
a=\frac{-2500±1500}{-200}
Multiply 2 times -100.
a=-\frac{1000}{-200}
Now solve the equation a=\frac{-2500±1500}{-200} when ± is plus. Add -2500 to 1500.
a=5
Divide -1000 by -200.
a=-\frac{4000}{-200}
Now solve the equation a=\frac{-2500±1500}{-200} when ± is minus. Subtract 1500 from -2500.
a=20
Divide -4000 by -200.
a=5 a=20
The equation is now solved.
-100a^{2}+2500a=10000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-100a^{2}+2500a}{-100}=\frac{10000}{-100}
Divide both sides by -100.
a^{2}+\frac{2500}{-100}a=\frac{10000}{-100}
Dividing by -100 undoes the multiplication by -100.
a^{2}-25a=\frac{10000}{-100}
Divide 2500 by -100.
a^{2}-25a=-100
Divide 10000 by -100.
a^{2}-25a+\left(-\frac{25}{2}\right)^{2}=-100+\left(-\frac{25}{2}\right)^{2}
Divide -25, the coefficient of the x term, by 2 to get -\frac{25}{2}. Then add the square of -\frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-25a+\frac{625}{4}=-100+\frac{625}{4}
Square -\frac{25}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-25a+\frac{625}{4}=\frac{225}{4}
Add -100 to \frac{625}{4}.
\left(a-\frac{25}{2}\right)^{2}=\frac{225}{4}
Factor a^{2}-25a+\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{25}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Take the square root of both sides of the equation.
a-\frac{25}{2}=\frac{15}{2} a-\frac{25}{2}=-\frac{15}{2}
Simplify.
a=20 a=5
Add \frac{25}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}