Solve for N
N=-\frac{125P}{6}+\frac{23}{120}
Solve for P
P=-\frac{6N}{125}+\frac{23}{2500}
Share
Copied to clipboard
120N=23-2500P
Subtract 2500P from both sides.
\frac{120N}{120}=\frac{23-2500P}{120}
Divide both sides by 120.
N=\frac{23-2500P}{120}
Dividing by 120 undoes the multiplication by 120.
N=-\frac{125P}{6}+\frac{23}{120}
Divide 23-2500P by 120.
2500P=23-120N
Subtract 120N from both sides.
\frac{2500P}{2500}=\frac{23-120N}{2500}
Divide both sides by 2500.
P=\frac{23-120N}{2500}
Dividing by 2500 undoes the multiplication by 2500.
P=-\frac{6N}{125}+\frac{23}{2500}
Divide 23-120N by 2500.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}