Evaluate
\frac{25}{3}\approx 8.333333333
Factor
\frac{5 ^ {2}}{3} = 8\frac{1}{3} = 8.333333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{300)}\phantom{1}\\300\overline{)2500}\\\end{array}
Use the 1^{st} digit 2 from dividend 2500
\begin{array}{l}\phantom{300)}0\phantom{2}\\300\overline{)2500}\\\end{array}
Since 2 is less than 300, use the next digit 5 from dividend 2500 and add 0 to the quotient
\begin{array}{l}\phantom{300)}0\phantom{3}\\300\overline{)2500}\\\end{array}
Use the 2^{nd} digit 5 from dividend 2500
\begin{array}{l}\phantom{300)}00\phantom{4}\\300\overline{)2500}\\\end{array}
Since 25 is less than 300, use the next digit 0 from dividend 2500 and add 0 to the quotient
\begin{array}{l}\phantom{300)}00\phantom{5}\\300\overline{)2500}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2500
\begin{array}{l}\phantom{300)}000\phantom{6}\\300\overline{)2500}\\\end{array}
Since 250 is less than 300, use the next digit 0 from dividend 2500 and add 0 to the quotient
\begin{array}{l}\phantom{300)}000\phantom{7}\\300\overline{)2500}\\\end{array}
Use the 4^{th} digit 0 from dividend 2500
\begin{array}{l}\phantom{300)}0008\phantom{8}\\300\overline{)2500}\\\phantom{300)}\underline{\phantom{}2400\phantom{}}\\\phantom{300)9}100\\\end{array}
Find closest multiple of 300 to 2500. We see that 8 \times 300 = 2400 is the nearest. Now subtract 2400 from 2500 to get reminder 100. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }100
Since 100 is less than 300, stop the division. The reminder is 100. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}