Solve for L_2
L_{2}=-100
L_{2}=25
Share
Copied to clipboard
75L_{2}+L_{2}^{2}=2500
Swap sides so that all variable terms are on the left hand side.
75L_{2}+L_{2}^{2}-2500=0
Subtract 2500 from both sides.
L_{2}^{2}+75L_{2}-2500=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=75 ab=-2500
To solve the equation, factor L_{2}^{2}+75L_{2}-2500 using formula L_{2}^{2}+\left(a+b\right)L_{2}+ab=\left(L_{2}+a\right)\left(L_{2}+b\right). To find a and b, set up a system to be solved.
-1,2500 -2,1250 -4,625 -5,500 -10,250 -20,125 -25,100 -50,50
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2500.
-1+2500=2499 -2+1250=1248 -4+625=621 -5+500=495 -10+250=240 -20+125=105 -25+100=75 -50+50=0
Calculate the sum for each pair.
a=-25 b=100
The solution is the pair that gives sum 75.
\left(L_{2}-25\right)\left(L_{2}+100\right)
Rewrite factored expression \left(L_{2}+a\right)\left(L_{2}+b\right) using the obtained values.
L_{2}=25 L_{2}=-100
To find equation solutions, solve L_{2}-25=0 and L_{2}+100=0.
75L_{2}+L_{2}^{2}=2500
Swap sides so that all variable terms are on the left hand side.
75L_{2}+L_{2}^{2}-2500=0
Subtract 2500 from both sides.
L_{2}^{2}+75L_{2}-2500=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=75 ab=1\left(-2500\right)=-2500
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as L_{2}^{2}+aL_{2}+bL_{2}-2500. To find a and b, set up a system to be solved.
-1,2500 -2,1250 -4,625 -5,500 -10,250 -20,125 -25,100 -50,50
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2500.
-1+2500=2499 -2+1250=1248 -4+625=621 -5+500=495 -10+250=240 -20+125=105 -25+100=75 -50+50=0
Calculate the sum for each pair.
a=-25 b=100
The solution is the pair that gives sum 75.
\left(L_{2}^{2}-25L_{2}\right)+\left(100L_{2}-2500\right)
Rewrite L_{2}^{2}+75L_{2}-2500 as \left(L_{2}^{2}-25L_{2}\right)+\left(100L_{2}-2500\right).
L_{2}\left(L_{2}-25\right)+100\left(L_{2}-25\right)
Factor out L_{2} in the first and 100 in the second group.
\left(L_{2}-25\right)\left(L_{2}+100\right)
Factor out common term L_{2}-25 by using distributive property.
L_{2}=25 L_{2}=-100
To find equation solutions, solve L_{2}-25=0 and L_{2}+100=0.
75L_{2}+L_{2}^{2}=2500
Swap sides so that all variable terms are on the left hand side.
75L_{2}+L_{2}^{2}-2500=0
Subtract 2500 from both sides.
L_{2}^{2}+75L_{2}-2500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
L_{2}=\frac{-75±\sqrt{75^{2}-4\left(-2500\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 75 for b, and -2500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
L_{2}=\frac{-75±\sqrt{5625-4\left(-2500\right)}}{2}
Square 75.
L_{2}=\frac{-75±\sqrt{5625+10000}}{2}
Multiply -4 times -2500.
L_{2}=\frac{-75±\sqrt{15625}}{2}
Add 5625 to 10000.
L_{2}=\frac{-75±125}{2}
Take the square root of 15625.
L_{2}=\frac{50}{2}
Now solve the equation L_{2}=\frac{-75±125}{2} when ± is plus. Add -75 to 125.
L_{2}=25
Divide 50 by 2.
L_{2}=-\frac{200}{2}
Now solve the equation L_{2}=\frac{-75±125}{2} when ± is minus. Subtract 125 from -75.
L_{2}=-100
Divide -200 by 2.
L_{2}=25 L_{2}=-100
The equation is now solved.
75L_{2}+L_{2}^{2}=2500
Swap sides so that all variable terms are on the left hand side.
L_{2}^{2}+75L_{2}=2500
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
L_{2}^{2}+75L_{2}+\left(\frac{75}{2}\right)^{2}=2500+\left(\frac{75}{2}\right)^{2}
Divide 75, the coefficient of the x term, by 2 to get \frac{75}{2}. Then add the square of \frac{75}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
L_{2}^{2}+75L_{2}+\frac{5625}{4}=2500+\frac{5625}{4}
Square \frac{75}{2} by squaring both the numerator and the denominator of the fraction.
L_{2}^{2}+75L_{2}+\frac{5625}{4}=\frac{15625}{4}
Add 2500 to \frac{5625}{4}.
\left(L_{2}+\frac{75}{2}\right)^{2}=\frac{15625}{4}
Factor L_{2}^{2}+75L_{2}+\frac{5625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(L_{2}+\frac{75}{2}\right)^{2}}=\sqrt{\frac{15625}{4}}
Take the square root of both sides of the equation.
L_{2}+\frac{75}{2}=\frac{125}{2} L_{2}+\frac{75}{2}=-\frac{125}{2}
Simplify.
L_{2}=25 L_{2}=-100
Subtract \frac{75}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}