Solve for q
q=5\sqrt{30}\approx 27.386127875
q=-5\sqrt{30}\approx -27.386127875
Share
Copied to clipboard
2500=\frac{10}{3}q^{2}
Multiply \frac{1}{3} and 10 to get \frac{10}{3}.
\frac{10}{3}q^{2}=2500
Swap sides so that all variable terms are on the left hand side.
q^{2}=2500\times \frac{3}{10}
Multiply both sides by \frac{3}{10}, the reciprocal of \frac{10}{3}.
q^{2}=750
Multiply 2500 and \frac{3}{10} to get 750.
q=5\sqrt{30} q=-5\sqrt{30}
Take the square root of both sides of the equation.
2500=\frac{10}{3}q^{2}
Multiply \frac{1}{3} and 10 to get \frac{10}{3}.
\frac{10}{3}q^{2}=2500
Swap sides so that all variable terms are on the left hand side.
\frac{10}{3}q^{2}-2500=0
Subtract 2500 from both sides.
q=\frac{0±\sqrt{0^{2}-4\times \frac{10}{3}\left(-2500\right)}}{2\times \frac{10}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{10}{3} for a, 0 for b, and -2500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{0±\sqrt{-4\times \frac{10}{3}\left(-2500\right)}}{2\times \frac{10}{3}}
Square 0.
q=\frac{0±\sqrt{-\frac{40}{3}\left(-2500\right)}}{2\times \frac{10}{3}}
Multiply -4 times \frac{10}{3}.
q=\frac{0±\sqrt{\frac{100000}{3}}}{2\times \frac{10}{3}}
Multiply -\frac{40}{3} times -2500.
q=\frac{0±\frac{100\sqrt{30}}{3}}{2\times \frac{10}{3}}
Take the square root of \frac{100000}{3}.
q=\frac{0±\frac{100\sqrt{30}}{3}}{\frac{20}{3}}
Multiply 2 times \frac{10}{3}.
q=5\sqrt{30}
Now solve the equation q=\frac{0±\frac{100\sqrt{30}}{3}}{\frac{20}{3}} when ± is plus.
q=-5\sqrt{30}
Now solve the equation q=\frac{0±\frac{100\sqrt{30}}{3}}{\frac{20}{3}} when ± is minus.
q=5\sqrt{30} q=-5\sqrt{30}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}