Evaluate
\frac{250}{171}\approx 1.461988304
Factor
\frac{2 \cdot 5 ^ {3}}{3 ^ {2} \cdot 19} = 1\frac{79}{171} = 1.4619883040935673
Share
Copied to clipboard
\begin{array}{l}\phantom{171)}\phantom{1}\\171\overline{)250}\\\end{array}
Use the 1^{st} digit 2 from dividend 250
\begin{array}{l}\phantom{171)}0\phantom{2}\\171\overline{)250}\\\end{array}
Since 2 is less than 171, use the next digit 5 from dividend 250 and add 0 to the quotient
\begin{array}{l}\phantom{171)}0\phantom{3}\\171\overline{)250}\\\end{array}
Use the 2^{nd} digit 5 from dividend 250
\begin{array}{l}\phantom{171)}00\phantom{4}\\171\overline{)250}\\\end{array}
Since 25 is less than 171, use the next digit 0 from dividend 250 and add 0 to the quotient
\begin{array}{l}\phantom{171)}00\phantom{5}\\171\overline{)250}\\\end{array}
Use the 3^{rd} digit 0 from dividend 250
\begin{array}{l}\phantom{171)}001\phantom{6}\\171\overline{)250}\\\phantom{171)}\underline{\phantom{}171\phantom{}}\\\phantom{171)9}79\\\end{array}
Find closest multiple of 171 to 250. We see that 1 \times 171 = 171 is the nearest. Now subtract 171 from 250 to get reminder 79. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }79
Since 79 is less than 171, stop the division. The reminder is 79. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}