Evaluate
\frac{5}{3}\approx 1.666666667
Factor
\frac{5}{3} = 1\frac{2}{3} = 1.6666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{150)}\phantom{1}\\150\overline{)250}\\\end{array}
Use the 1^{st} digit 2 from dividend 250
\begin{array}{l}\phantom{150)}0\phantom{2}\\150\overline{)250}\\\end{array}
Since 2 is less than 150, use the next digit 5 from dividend 250 and add 0 to the quotient
\begin{array}{l}\phantom{150)}0\phantom{3}\\150\overline{)250}\\\end{array}
Use the 2^{nd} digit 5 from dividend 250
\begin{array}{l}\phantom{150)}00\phantom{4}\\150\overline{)250}\\\end{array}
Since 25 is less than 150, use the next digit 0 from dividend 250 and add 0 to the quotient
\begin{array}{l}\phantom{150)}00\phantom{5}\\150\overline{)250}\\\end{array}
Use the 3^{rd} digit 0 from dividend 250
\begin{array}{l}\phantom{150)}001\phantom{6}\\150\overline{)250}\\\phantom{150)}\underline{\phantom{}150\phantom{}}\\\phantom{150)}100\\\end{array}
Find closest multiple of 150 to 250. We see that 1 \times 150 = 150 is the nearest. Now subtract 150 from 250 to get reminder 100. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }100
Since 100 is less than 150, stop the division. The reminder is 100. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}