Solve for n
n = \frac{\log_{1.01} {(1.8166968)}}{12} \approx 5.000000468
Solve for n (complex solution)
n=\frac{i\pi n_{1}}{6\ln(1.01)}-\frac{\log_{1.01}\left(\frac{1250000}{2270871}\right)}{12}
n_{1}\in \mathrm{Z}
Share
Copied to clipboard
\frac{\left(1+\frac{0.12}{12}\right)^{12n}-1}{\frac{0.12}{12}}=\frac{20417.42}{250}
Divide both sides by 250.
\frac{\left(1+\frac{0.12}{12}\right)^{12n}-1}{\frac{0.12}{12}}=\frac{2041742}{25000}
Expand \frac{20417.42}{250} by multiplying both numerator and the denominator by 100.
\frac{\left(1+\frac{0.12}{12}\right)^{12n}-1}{\frac{0.12}{12}}=\frac{1020871}{12500}
Reduce the fraction \frac{2041742}{25000} to lowest terms by extracting and canceling out 2.
\frac{\left(1+\frac{12}{1200}\right)^{12n}-1}{\frac{0.12}{12}}=\frac{1020871}{12500}
Expand \frac{0.12}{12} by multiplying both numerator and the denominator by 100.
\frac{\left(1+\frac{1}{100}\right)^{12n}-1}{\frac{0.12}{12}}=\frac{1020871}{12500}
Reduce the fraction \frac{12}{1200} to lowest terms by extracting and canceling out 12.
\frac{\left(\frac{101}{100}\right)^{12n}-1}{\frac{0.12}{12}}=\frac{1020871}{12500}
Add 1 and \frac{1}{100} to get \frac{101}{100}.
\frac{\left(\frac{101}{100}\right)^{12n}-1}{\frac{12}{1200}}=\frac{1020871}{12500}
Expand \frac{0.12}{12} by multiplying both numerator and the denominator by 100.
\frac{\left(\frac{101}{100}\right)^{12n}-1}{\frac{1}{100}}=\frac{1020871}{12500}
Reduce the fraction \frac{12}{1200} to lowest terms by extracting and canceling out 12.
\frac{\left(\frac{101}{100}\right)^{12n}}{\frac{1}{100}}+\frac{-1}{\frac{1}{100}}=\frac{1020871}{12500}
Divide each term of \left(\frac{101}{100}\right)^{12n}-1 by \frac{1}{100} to get \frac{\left(\frac{101}{100}\right)^{12n}}{\frac{1}{100}}+\frac{-1}{\frac{1}{100}}.
\frac{\left(\frac{101}{100}\right)^{12n}}{\frac{1}{100}}-100=\frac{1020871}{12500}
Divide -1 by \frac{1}{100} by multiplying -1 by the reciprocal of \frac{1}{100}.
\frac{\left(\frac{101}{100}\right)^{12n}}{\frac{1}{100}}-100-\frac{1020871}{12500}=0
Subtract \frac{1020871}{12500} from both sides.
\frac{\left(\frac{101}{100}\right)^{12n}}{\frac{1}{100}}-\frac{2270871}{12500}=0
Subtract \frac{1020871}{12500} from -100 to get -\frac{2270871}{12500}.
100\times \left(\frac{101}{100}\right)^{12n}-\frac{2270871}{12500}=0
Use the rules of exponents and logarithms to solve the equation.
100\times \left(\frac{101}{100}\right)^{12n}=\frac{2270871}{12500}
Add \frac{2270871}{12500} to both sides of the equation.
\left(\frac{101}{100}\right)^{12n}=\frac{2270871}{1250000}
Divide both sides by 100.
\log(\left(\frac{101}{100}\right)^{12n})=\log(\frac{2270871}{1250000})
Take the logarithm of both sides of the equation.
12n\log(\frac{101}{100})=\log(\frac{2270871}{1250000})
The logarithm of a number raised to a power is the power times the logarithm of the number.
12n=\frac{\log(\frac{2270871}{1250000})}{\log(\frac{101}{100})}
Divide both sides by \log(\frac{101}{100}).
12n=\log_{\frac{101}{100}}\left(\frac{2270871}{1250000}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
n=\frac{\ln(\frac{2270871}{1250000})}{12\ln(\frac{101}{100})}
Divide both sides by 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}