Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+1=\frac{26}{25}
Divide both sides by 25.
x^{2}+1-\frac{26}{25}=0
Subtract \frac{26}{25} from both sides.
x^{2}-\frac{1}{25}=0
Subtract \frac{26}{25} from 1 to get -\frac{1}{25}.
25x^{2}-1=0
Multiply both sides by 25.
\left(5x-1\right)\left(5x+1\right)=0
Consider 25x^{2}-1. Rewrite 25x^{2}-1 as \left(5x\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{5} x=-\frac{1}{5}
To find equation solutions, solve 5x-1=0 and 5x+1=0.
x^{2}+1=\frac{26}{25}
Divide both sides by 25.
x^{2}=\frac{26}{25}-1
Subtract 1 from both sides.
x^{2}=\frac{1}{25}
Subtract 1 from \frac{26}{25} to get \frac{1}{25}.
x=\frac{1}{5} x=-\frac{1}{5}
Take the square root of both sides of the equation.
x^{2}+1=\frac{26}{25}
Divide both sides by 25.
x^{2}+1-\frac{26}{25}=0
Subtract \frac{26}{25} from both sides.
x^{2}-\frac{1}{25}=0
Subtract \frac{26}{25} from 1 to get -\frac{1}{25}.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{25}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{1}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{1}{25}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{4}{25}}}{2}
Multiply -4 times -\frac{1}{25}.
x=\frac{0±\frac{2}{5}}{2}
Take the square root of \frac{4}{25}.
x=\frac{1}{5}
Now solve the equation x=\frac{0±\frac{2}{5}}{2} when ± is plus.
x=-\frac{1}{5}
Now solve the equation x=\frac{0±\frac{2}{5}}{2} when ± is minus.
x=\frac{1}{5} x=-\frac{1}{5}
The equation is now solved.