Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25=x^{2}+4x
Use the distributive property to multiply x+4 by x.
x^{2}+4x=25
Swap sides so that all variable terms are on the left hand side.
x^{2}+4x-25=0
Subtract 25 from both sides.
x=\frac{-4±\sqrt{4^{2}-4\left(-25\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-25\right)}}{2}
Square 4.
x=\frac{-4±\sqrt{16+100}}{2}
Multiply -4 times -25.
x=\frac{-4±\sqrt{116}}{2}
Add 16 to 100.
x=\frac{-4±2\sqrt{29}}{2}
Take the square root of 116.
x=\frac{2\sqrt{29}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{29}}{2} when ± is plus. Add -4 to 2\sqrt{29}.
x=\sqrt{29}-2
Divide -4+2\sqrt{29} by 2.
x=\frac{-2\sqrt{29}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{29}}{2} when ± is minus. Subtract 2\sqrt{29} from -4.
x=-\sqrt{29}-2
Divide -4-2\sqrt{29} by 2.
x=\sqrt{29}-2 x=-\sqrt{29}-2
The equation is now solved.
25=x^{2}+4x
Use the distributive property to multiply x+4 by x.
x^{2}+4x=25
Swap sides so that all variable terms are on the left hand side.
x^{2}+4x+2^{2}=25+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=25+4
Square 2.
x^{2}+4x+4=29
Add 25 to 4.
\left(x+2\right)^{2}=29
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{29}
Take the square root of both sides of the equation.
x+2=\sqrt{29} x+2=-\sqrt{29}
Simplify.
x=\sqrt{29}-2 x=-\sqrt{29}-2
Subtract 2 from both sides of the equation.
25=x^{2}+4x
Use the distributive property to multiply x+4 by x.
x^{2}+4x=25
Swap sides so that all variable terms are on the left hand side.
x^{2}+4x-25=0
Subtract 25 from both sides.
x=\frac{-4±\sqrt{4^{2}-4\left(-25\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-25\right)}}{2}
Square 4.
x=\frac{-4±\sqrt{16+100}}{2}
Multiply -4 times -25.
x=\frac{-4±\sqrt{116}}{2}
Add 16 to 100.
x=\frac{-4±2\sqrt{29}}{2}
Take the square root of 116.
x=\frac{2\sqrt{29}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{29}}{2} when ± is plus. Add -4 to 2\sqrt{29}.
x=\sqrt{29}-2
Divide -4+2\sqrt{29} by 2.
x=\frac{-2\sqrt{29}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{29}}{2} when ± is minus. Subtract 2\sqrt{29} from -4.
x=-\sqrt{29}-2
Divide -4-2\sqrt{29} by 2.
x=\sqrt{29}-2 x=-\sqrt{29}-2
The equation is now solved.
25=x^{2}+4x
Use the distributive property to multiply x+4 by x.
x^{2}+4x=25
Swap sides so that all variable terms are on the left hand side.
x^{2}+4x+2^{2}=25+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=25+4
Square 2.
x^{2}+4x+4=29
Add 25 to 4.
\left(x+2\right)^{2}=29
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{29}
Take the square root of both sides of the equation.
x+2=\sqrt{29} x+2=-\sqrt{29}
Simplify.
x=\sqrt{29}-2 x=-\sqrt{29}-2
Subtract 2 from both sides of the equation.