Solve for x
x<10
Graph
Share
Copied to clipboard
25+12.5x-9.9x<51
Subtract 9.9x from both sides.
25+2.6x<51
Combine 12.5x and -9.9x to get 2.6x.
2.6x<51-25
Subtract 25 from both sides.
2.6x<26
Subtract 25 from 51 to get 26.
x<\frac{26}{2.6}
Divide both sides by 2.6. Since 2.6 is positive, the inequality direction remains the same.
x<\frac{260}{26}
Expand \frac{26}{2.6} by multiplying both numerator and the denominator by 10.
x<10
Divide 260 by 26 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}