Solve for y
y = \frac{\sqrt{5777} + 81}{8} \approx 19.625822333
y=\frac{81-\sqrt{5777}}{8}\approx 0.624177667
Graph
Share
Copied to clipboard
25y-49=4y^{2}-56y
Subtract 49 from both sides.
25y-49-4y^{2}=-56y
Subtract 4y^{2} from both sides.
25y-49-4y^{2}+56y=0
Add 56y to both sides.
81y-49-4y^{2}=0
Combine 25y and 56y to get 81y.
-4y^{2}+81y-49=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-81±\sqrt{81^{2}-4\left(-4\right)\left(-49\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 81 for b, and -49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-81±\sqrt{6561-4\left(-4\right)\left(-49\right)}}{2\left(-4\right)}
Square 81.
y=\frac{-81±\sqrt{6561+16\left(-49\right)}}{2\left(-4\right)}
Multiply -4 times -4.
y=\frac{-81±\sqrt{6561-784}}{2\left(-4\right)}
Multiply 16 times -49.
y=\frac{-81±\sqrt{5777}}{2\left(-4\right)}
Add 6561 to -784.
y=\frac{-81±\sqrt{5777}}{-8}
Multiply 2 times -4.
y=\frac{\sqrt{5777}-81}{-8}
Now solve the equation y=\frac{-81±\sqrt{5777}}{-8} when ± is plus. Add -81 to \sqrt{5777}.
y=\frac{81-\sqrt{5777}}{8}
Divide -81+\sqrt{5777} by -8.
y=\frac{-\sqrt{5777}-81}{-8}
Now solve the equation y=\frac{-81±\sqrt{5777}}{-8} when ± is minus. Subtract \sqrt{5777} from -81.
y=\frac{\sqrt{5777}+81}{8}
Divide -81-\sqrt{5777} by -8.
y=\frac{81-\sqrt{5777}}{8} y=\frac{\sqrt{5777}+81}{8}
The equation is now solved.
25y-4y^{2}=49-56y
Subtract 4y^{2} from both sides.
25y-4y^{2}+56y=49
Add 56y to both sides.
81y-4y^{2}=49
Combine 25y and 56y to get 81y.
-4y^{2}+81y=49
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4y^{2}+81y}{-4}=\frac{49}{-4}
Divide both sides by -4.
y^{2}+\frac{81}{-4}y=\frac{49}{-4}
Dividing by -4 undoes the multiplication by -4.
y^{2}-\frac{81}{4}y=\frac{49}{-4}
Divide 81 by -4.
y^{2}-\frac{81}{4}y=-\frac{49}{4}
Divide 49 by -4.
y^{2}-\frac{81}{4}y+\left(-\frac{81}{8}\right)^{2}=-\frac{49}{4}+\left(-\frac{81}{8}\right)^{2}
Divide -\frac{81}{4}, the coefficient of the x term, by 2 to get -\frac{81}{8}. Then add the square of -\frac{81}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{81}{4}y+\frac{6561}{64}=-\frac{49}{4}+\frac{6561}{64}
Square -\frac{81}{8} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{81}{4}y+\frac{6561}{64}=\frac{5777}{64}
Add -\frac{49}{4} to \frac{6561}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{81}{8}\right)^{2}=\frac{5777}{64}
Factor y^{2}-\frac{81}{4}y+\frac{6561}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{81}{8}\right)^{2}}=\sqrt{\frac{5777}{64}}
Take the square root of both sides of the equation.
y-\frac{81}{8}=\frac{\sqrt{5777}}{8} y-\frac{81}{8}=-\frac{\sqrt{5777}}{8}
Simplify.
y=\frac{\sqrt{5777}+81}{8} y=\frac{81-\sqrt{5777}}{8}
Add \frac{81}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}