Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x^{2}-3x=8
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
25x^{2}-3x-8=8-8
Subtract 8 from both sides of the equation.
25x^{2}-3x-8=0
Subtracting 8 from itself leaves 0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 25\left(-8\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -3 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 25\left(-8\right)}}{2\times 25}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-100\left(-8\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-3\right)±\sqrt{9+800}}{2\times 25}
Multiply -100 times -8.
x=\frac{-\left(-3\right)±\sqrt{809}}{2\times 25}
Add 9 to 800.
x=\frac{3±\sqrt{809}}{2\times 25}
The opposite of -3 is 3.
x=\frac{3±\sqrt{809}}{50}
Multiply 2 times 25.
x=\frac{\sqrt{809}+3}{50}
Now solve the equation x=\frac{3±\sqrt{809}}{50} when ± is plus. Add 3 to \sqrt{809}.
x=\frac{3-\sqrt{809}}{50}
Now solve the equation x=\frac{3±\sqrt{809}}{50} when ± is minus. Subtract \sqrt{809} from 3.
x=\frac{\sqrt{809}+3}{50} x=\frac{3-\sqrt{809}}{50}
The equation is now solved.
25x^{2}-3x=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{25x^{2}-3x}{25}=\frac{8}{25}
Divide both sides by 25.
x^{2}-\frac{3}{25}x=\frac{8}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-\frac{3}{25}x+\left(-\frac{3}{50}\right)^{2}=\frac{8}{25}+\left(-\frac{3}{50}\right)^{2}
Divide -\frac{3}{25}, the coefficient of the x term, by 2 to get -\frac{3}{50}. Then add the square of -\frac{3}{50} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{25}x+\frac{9}{2500}=\frac{8}{25}+\frac{9}{2500}
Square -\frac{3}{50} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{25}x+\frac{9}{2500}=\frac{809}{2500}
Add \frac{8}{25} to \frac{9}{2500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{50}\right)^{2}=\frac{809}{2500}
Factor x^{2}-\frac{3}{25}x+\frac{9}{2500}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{50}\right)^{2}}=\sqrt{\frac{809}{2500}}
Take the square root of both sides of the equation.
x-\frac{3}{50}=\frac{\sqrt{809}}{50} x-\frac{3}{50}=-\frac{\sqrt{809}}{50}
Simplify.
x=\frac{\sqrt{809}+3}{50} x=\frac{3-\sqrt{809}}{50}
Add \frac{3}{50} to both sides of the equation.