Solve for x (complex solution)
x=\frac{92+16\sqrt{6}i}{25}\approx 3.68+1.567673435i
x=\frac{-16\sqrt{6}i+92}{25}\approx 3.68-1.567673435i
Graph
Share
Copied to clipboard
25x^{2}-184x+400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-184\right)±\sqrt{\left(-184\right)^{2}-4\times 25\times 400}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -184 for b, and 400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-184\right)±\sqrt{33856-4\times 25\times 400}}{2\times 25}
Square -184.
x=\frac{-\left(-184\right)±\sqrt{33856-100\times 400}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-184\right)±\sqrt{33856-40000}}{2\times 25}
Multiply -100 times 400.
x=\frac{-\left(-184\right)±\sqrt{-6144}}{2\times 25}
Add 33856 to -40000.
x=\frac{-\left(-184\right)±32\sqrt{6}i}{2\times 25}
Take the square root of -6144.
x=\frac{184±32\sqrt{6}i}{2\times 25}
The opposite of -184 is 184.
x=\frac{184±32\sqrt{6}i}{50}
Multiply 2 times 25.
x=\frac{184+32\sqrt{6}i}{50}
Now solve the equation x=\frac{184±32\sqrt{6}i}{50} when ± is plus. Add 184 to 32i\sqrt{6}.
x=\frac{92+16\sqrt{6}i}{25}
Divide 184+32i\sqrt{6} by 50.
x=\frac{-32\sqrt{6}i+184}{50}
Now solve the equation x=\frac{184±32\sqrt{6}i}{50} when ± is minus. Subtract 32i\sqrt{6} from 184.
x=\frac{-16\sqrt{6}i+92}{25}
Divide 184-32i\sqrt{6} by 50.
x=\frac{92+16\sqrt{6}i}{25} x=\frac{-16\sqrt{6}i+92}{25}
The equation is now solved.
25x^{2}-184x+400=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
25x^{2}-184x+400-400=-400
Subtract 400 from both sides of the equation.
25x^{2}-184x=-400
Subtracting 400 from itself leaves 0.
\frac{25x^{2}-184x}{25}=-\frac{400}{25}
Divide both sides by 25.
x^{2}-\frac{184}{25}x=-\frac{400}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-\frac{184}{25}x=-16
Divide -400 by 25.
x^{2}-\frac{184}{25}x+\left(-\frac{92}{25}\right)^{2}=-16+\left(-\frac{92}{25}\right)^{2}
Divide -\frac{184}{25}, the coefficient of the x term, by 2 to get -\frac{92}{25}. Then add the square of -\frac{92}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{184}{25}x+\frac{8464}{625}=-16+\frac{8464}{625}
Square -\frac{92}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{184}{25}x+\frac{8464}{625}=-\frac{1536}{625}
Add -16 to \frac{8464}{625}.
\left(x-\frac{92}{25}\right)^{2}=-\frac{1536}{625}
Factor x^{2}-\frac{184}{25}x+\frac{8464}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{92}{25}\right)^{2}}=\sqrt{-\frac{1536}{625}}
Take the square root of both sides of the equation.
x-\frac{92}{25}=\frac{16\sqrt{6}i}{25} x-\frac{92}{25}=-\frac{16\sqrt{6}i}{25}
Simplify.
x=\frac{92+16\sqrt{6}i}{25} x=\frac{-16\sqrt{6}i+92}{25}
Add \frac{92}{25} to both sides of the equation.
x ^ 2 -\frac{184}{25}x +16 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 25
r + s = \frac{184}{25} rs = 16
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{92}{25} - u s = \frac{92}{25} + u
Two numbers r and s sum up to \frac{184}{25} exactly when the average of the two numbers is \frac{1}{2}*\frac{184}{25} = \frac{92}{25}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{92}{25} - u) (\frac{92}{25} + u) = 16
To solve for unknown quantity u, substitute these in the product equation rs = 16
\frac{8464}{625} - u^2 = 16
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 16-\frac{8464}{625} = \frac{1536}{625}
Simplify the expression by subtracting \frac{8464}{625} on both sides
u^2 = -\frac{1536}{625} u = \pm\sqrt{-\frac{1536}{625}} = \pm \frac{\sqrt{1536}}{25}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{92}{25} - \frac{\sqrt{1536}}{25}i = 3.680 - 1.568i s = \frac{92}{25} + \frac{\sqrt{1536}}{25}i = 3.680 + 1.568i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}