Factor
\left(5x+12\right)\left(5x+18\right)
Evaluate
\left(5x+12\right)\left(5x+18\right)
Graph
Share
Copied to clipboard
a+b=150 ab=25\times 216=5400
Factor the expression by grouping. First, the expression needs to be rewritten as 25x^{2}+ax+bx+216. To find a and b, set up a system to be solved.
1,5400 2,2700 3,1800 4,1350 5,1080 6,900 8,675 9,600 10,540 12,450 15,360 18,300 20,270 24,225 25,216 27,200 30,180 36,150 40,135 45,120 50,108 54,100 60,90 72,75
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 5400.
1+5400=5401 2+2700=2702 3+1800=1803 4+1350=1354 5+1080=1085 6+900=906 8+675=683 9+600=609 10+540=550 12+450=462 15+360=375 18+300=318 20+270=290 24+225=249 25+216=241 27+200=227 30+180=210 36+150=186 40+135=175 45+120=165 50+108=158 54+100=154 60+90=150 72+75=147
Calculate the sum for each pair.
a=60 b=90
The solution is the pair that gives sum 150.
\left(25x^{2}+60x\right)+\left(90x+216\right)
Rewrite 25x^{2}+150x+216 as \left(25x^{2}+60x\right)+\left(90x+216\right).
5x\left(5x+12\right)+18\left(5x+12\right)
Factor out 5x in the first and 18 in the second group.
\left(5x+12\right)\left(5x+18\right)
Factor out common term 5x+12 by using distributive property.
25x^{2}+150x+216=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-150±\sqrt{150^{2}-4\times 25\times 216}}{2\times 25}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-150±\sqrt{22500-4\times 25\times 216}}{2\times 25}
Square 150.
x=\frac{-150±\sqrt{22500-100\times 216}}{2\times 25}
Multiply -4 times 25.
x=\frac{-150±\sqrt{22500-21600}}{2\times 25}
Multiply -100 times 216.
x=\frac{-150±\sqrt{900}}{2\times 25}
Add 22500 to -21600.
x=\frac{-150±30}{2\times 25}
Take the square root of 900.
x=\frac{-150±30}{50}
Multiply 2 times 25.
x=-\frac{120}{50}
Now solve the equation x=\frac{-150±30}{50} when ± is plus. Add -150 to 30.
x=-\frac{12}{5}
Reduce the fraction \frac{-120}{50} to lowest terms by extracting and canceling out 10.
x=-\frac{180}{50}
Now solve the equation x=\frac{-150±30}{50} when ± is minus. Subtract 30 from -150.
x=-\frac{18}{5}
Reduce the fraction \frac{-180}{50} to lowest terms by extracting and canceling out 10.
25x^{2}+150x+216=25\left(x-\left(-\frac{12}{5}\right)\right)\left(x-\left(-\frac{18}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{12}{5} for x_{1} and -\frac{18}{5} for x_{2}.
25x^{2}+150x+216=25\left(x+\frac{12}{5}\right)\left(x+\frac{18}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
25x^{2}+150x+216=25\times \frac{5x+12}{5}\left(x+\frac{18}{5}\right)
Add \frac{12}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
25x^{2}+150x+216=25\times \frac{5x+12}{5}\times \frac{5x+18}{5}
Add \frac{18}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
25x^{2}+150x+216=25\times \frac{\left(5x+12\right)\left(5x+18\right)}{5\times 5}
Multiply \frac{5x+12}{5} times \frac{5x+18}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
25x^{2}+150x+216=25\times \frac{\left(5x+12\right)\left(5x+18\right)}{25}
Multiply 5 times 5.
25x^{2}+150x+216=\left(5x+12\right)\left(5x+18\right)
Cancel out 25, the greatest common factor in 25 and 25.
x ^ 2 +6x +\frac{216}{25} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 25
r + s = -6 rs = \frac{216}{25}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -3 - u s = -3 + u
Two numbers r and s sum up to -6 exactly when the average of the two numbers is \frac{1}{2}*-6 = -3. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-3 - u) (-3 + u) = \frac{216}{25}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{216}{25}
9 - u^2 = \frac{216}{25}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{216}{25}-9 = -\frac{9}{25}
Simplify the expression by subtracting 9 on both sides
u^2 = \frac{9}{25} u = \pm\sqrt{\frac{9}{25}} = \pm \frac{3}{5}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-3 - \frac{3}{5} = -3.600 s = -3 + \frac{3}{5} = -2.400
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}