Solve for s
s=\frac{4}{5}=0.8
s=-\frac{4}{5}=-0.8
Share
Copied to clipboard
\left(5s-4\right)\left(5s+4\right)=0
Consider 25s^{2}-16. Rewrite 25s^{2}-16 as \left(5s\right)^{2}-4^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
s=\frac{4}{5} s=-\frac{4}{5}
To find equation solutions, solve 5s-4=0 and 5s+4=0.
25s^{2}=16
Add 16 to both sides. Anything plus zero gives itself.
s^{2}=\frac{16}{25}
Divide both sides by 25.
s=\frac{4}{5} s=-\frac{4}{5}
Take the square root of both sides of the equation.
25s^{2}-16=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
s=\frac{0±\sqrt{0^{2}-4\times 25\left(-16\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 0 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{0±\sqrt{-4\times 25\left(-16\right)}}{2\times 25}
Square 0.
s=\frac{0±\sqrt{-100\left(-16\right)}}{2\times 25}
Multiply -4 times 25.
s=\frac{0±\sqrt{1600}}{2\times 25}
Multiply -100 times -16.
s=\frac{0±40}{2\times 25}
Take the square root of 1600.
s=\frac{0±40}{50}
Multiply 2 times 25.
s=\frac{4}{5}
Now solve the equation s=\frac{0±40}{50} when ± is plus. Reduce the fraction \frac{40}{50} to lowest terms by extracting and canceling out 10.
s=-\frac{4}{5}
Now solve the equation s=\frac{0±40}{50} when ± is minus. Reduce the fraction \frac{-40}{50} to lowest terms by extracting and canceling out 10.
s=\frac{4}{5} s=-\frac{4}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}