Factor
\left(p-3\right)\left(25p+1\right)
Evaluate
\left(p-3\right)\left(25p+1\right)
Share
Copied to clipboard
a+b=-74 ab=25\left(-3\right)=-75
Factor the expression by grouping. First, the expression needs to be rewritten as 25p^{2}+ap+bp-3. To find a and b, set up a system to be solved.
1,-75 3,-25 5,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -75.
1-75=-74 3-25=-22 5-15=-10
Calculate the sum for each pair.
a=-75 b=1
The solution is the pair that gives sum -74.
\left(25p^{2}-75p\right)+\left(p-3\right)
Rewrite 25p^{2}-74p-3 as \left(25p^{2}-75p\right)+\left(p-3\right).
25p\left(p-3\right)+p-3
Factor out 25p in 25p^{2}-75p.
\left(p-3\right)\left(25p+1\right)
Factor out common term p-3 by using distributive property.
25p^{2}-74p-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-\left(-74\right)±\sqrt{\left(-74\right)^{2}-4\times 25\left(-3\right)}}{2\times 25}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-74\right)±\sqrt{5476-4\times 25\left(-3\right)}}{2\times 25}
Square -74.
p=\frac{-\left(-74\right)±\sqrt{5476-100\left(-3\right)}}{2\times 25}
Multiply -4 times 25.
p=\frac{-\left(-74\right)±\sqrt{5476+300}}{2\times 25}
Multiply -100 times -3.
p=\frac{-\left(-74\right)±\sqrt{5776}}{2\times 25}
Add 5476 to 300.
p=\frac{-\left(-74\right)±76}{2\times 25}
Take the square root of 5776.
p=\frac{74±76}{2\times 25}
The opposite of -74 is 74.
p=\frac{74±76}{50}
Multiply 2 times 25.
p=\frac{150}{50}
Now solve the equation p=\frac{74±76}{50} when ± is plus. Add 74 to 76.
p=3
Divide 150 by 50.
p=-\frac{2}{50}
Now solve the equation p=\frac{74±76}{50} when ± is minus. Subtract 76 from 74.
p=-\frac{1}{25}
Reduce the fraction \frac{-2}{50} to lowest terms by extracting and canceling out 2.
25p^{2}-74p-3=25\left(p-3\right)\left(p-\left(-\frac{1}{25}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and -\frac{1}{25} for x_{2}.
25p^{2}-74p-3=25\left(p-3\right)\left(p+\frac{1}{25}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
25p^{2}-74p-3=25\left(p-3\right)\times \frac{25p+1}{25}
Add \frac{1}{25} to p by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
25p^{2}-74p-3=\left(p-3\right)\left(25p+1\right)
Cancel out 25, the greatest common factor in 25 and 25.
x ^ 2 -\frac{74}{25}x -\frac{3}{25} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 25
r + s = \frac{74}{25} rs = -\frac{3}{25}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{37}{25} - u s = \frac{37}{25} + u
Two numbers r and s sum up to \frac{74}{25} exactly when the average of the two numbers is \frac{1}{2}*\frac{74}{25} = \frac{37}{25}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{37}{25} - u) (\frac{37}{25} + u) = -\frac{3}{25}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{3}{25}
\frac{1369}{625} - u^2 = -\frac{3}{25}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{3}{25}-\frac{1369}{625} = -\frac{1444}{625}
Simplify the expression by subtracting \frac{1369}{625} on both sides
u^2 = \frac{1444}{625} u = \pm\sqrt{\frac{1444}{625}} = \pm \frac{38}{25}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{37}{25} - \frac{38}{25} = -0.040 s = \frac{37}{25} + \frac{38}{25} = 3
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}