Factor
5\left(b-3\right)\left(5b+8\right)
Evaluate
5\left(b-3\right)\left(5b+8\right)
Share
Copied to clipboard
5\left(5b^{2}-7b-24\right)
Factor out 5.
p+q=-7 pq=5\left(-24\right)=-120
Consider 5b^{2}-7b-24. Factor the expression by grouping. First, the expression needs to be rewritten as 5b^{2}+pb+qb-24. To find p and q, set up a system to be solved.
1,-120 2,-60 3,-40 4,-30 5,-24 6,-20 8,-15 10,-12
Since pq is negative, p and q have the opposite signs. Since p+q is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -120.
1-120=-119 2-60=-58 3-40=-37 4-30=-26 5-24=-19 6-20=-14 8-15=-7 10-12=-2
Calculate the sum for each pair.
p=-15 q=8
The solution is the pair that gives sum -7.
\left(5b^{2}-15b\right)+\left(8b-24\right)
Rewrite 5b^{2}-7b-24 as \left(5b^{2}-15b\right)+\left(8b-24\right).
5b\left(b-3\right)+8\left(b-3\right)
Factor out 5b in the first and 8 in the second group.
\left(b-3\right)\left(5b+8\right)
Factor out common term b-3 by using distributive property.
5\left(b-3\right)\left(5b+8\right)
Rewrite the complete factored expression.
25b^{2}-35b-120=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\times 25\left(-120\right)}}{2\times 25}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-35\right)±\sqrt{1225-4\times 25\left(-120\right)}}{2\times 25}
Square -35.
b=\frac{-\left(-35\right)±\sqrt{1225-100\left(-120\right)}}{2\times 25}
Multiply -4 times 25.
b=\frac{-\left(-35\right)±\sqrt{1225+12000}}{2\times 25}
Multiply -100 times -120.
b=\frac{-\left(-35\right)±\sqrt{13225}}{2\times 25}
Add 1225 to 12000.
b=\frac{-\left(-35\right)±115}{2\times 25}
Take the square root of 13225.
b=\frac{35±115}{2\times 25}
The opposite of -35 is 35.
b=\frac{35±115}{50}
Multiply 2 times 25.
b=\frac{150}{50}
Now solve the equation b=\frac{35±115}{50} when ± is plus. Add 35 to 115.
b=3
Divide 150 by 50.
b=-\frac{80}{50}
Now solve the equation b=\frac{35±115}{50} when ± is minus. Subtract 115 from 35.
b=-\frac{8}{5}
Reduce the fraction \frac{-80}{50} to lowest terms by extracting and canceling out 10.
25b^{2}-35b-120=25\left(b-3\right)\left(b-\left(-\frac{8}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and -\frac{8}{5} for x_{2}.
25b^{2}-35b-120=25\left(b-3\right)\left(b+\frac{8}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
25b^{2}-35b-120=25\left(b-3\right)\times \frac{5b+8}{5}
Add \frac{8}{5} to b by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
25b^{2}-35b-120=5\left(b-3\right)\left(5b+8\right)
Cancel out 5, the greatest common factor in 25 and 5.
x ^ 2 -\frac{7}{5}x -\frac{24}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 25
r + s = \frac{7}{5} rs = -\frac{24}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{7}{10} - u s = \frac{7}{10} + u
Two numbers r and s sum up to \frac{7}{5} exactly when the average of the two numbers is \frac{1}{2}*\frac{7}{5} = \frac{7}{10}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{7}{10} - u) (\frac{7}{10} + u) = -\frac{24}{5}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{24}{5}
\frac{49}{100} - u^2 = -\frac{24}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{24}{5}-\frac{49}{100} = -\frac{529}{100}
Simplify the expression by subtracting \frac{49}{100} on both sides
u^2 = \frac{529}{100} u = \pm\sqrt{\frac{529}{100}} = \pm \frac{23}{10}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{7}{10} - \frac{23}{10} = -1.600 s = \frac{7}{10} + \frac{23}{10} = 3
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}