Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5\left(5b^{2}-4b\right)
Factor out 5.
b\left(5b-4\right)
Consider 5b^{2}-4b. Factor out b.
5b\left(5b-4\right)
Rewrite the complete factored expression.
25b^{2}-20b=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}}}{2\times 25}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-20\right)±20}{2\times 25}
Take the square root of \left(-20\right)^{2}.
b=\frac{20±20}{2\times 25}
The opposite of -20 is 20.
b=\frac{20±20}{50}
Multiply 2 times 25.
b=\frac{40}{50}
Now solve the equation b=\frac{20±20}{50} when ± is plus. Add 20 to 20.
b=\frac{4}{5}
Reduce the fraction \frac{40}{50} to lowest terms by extracting and canceling out 10.
b=\frac{0}{50}
Now solve the equation b=\frac{20±20}{50} when ± is minus. Subtract 20 from 20.
b=0
Divide 0 by 50.
25b^{2}-20b=25\left(b-\frac{4}{5}\right)b
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4}{5} for x_{1} and 0 for x_{2}.
25b^{2}-20b=25\times \frac{5b-4}{5}b
Subtract \frac{4}{5} from b by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
25b^{2}-20b=5\left(5b-4\right)b
Cancel out 5, the greatest common factor in 25 and 5.