Solve for a
a=\frac{3+\sqrt{7}i}{5}\approx 0.6+0.529150262i
a=\frac{-\sqrt{7}i+3}{5}\approx 0.6-0.529150262i
Share
Copied to clipboard
25a^{2}-30a=-16
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
25a^{2}-30a-\left(-16\right)=-16-\left(-16\right)
Add 16 to both sides of the equation.
25a^{2}-30a-\left(-16\right)=0
Subtracting -16 from itself leaves 0.
25a^{2}-30a+16=0
Subtract -16 from 0.
a=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 25\times 16}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -30 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-30\right)±\sqrt{900-4\times 25\times 16}}{2\times 25}
Square -30.
a=\frac{-\left(-30\right)±\sqrt{900-100\times 16}}{2\times 25}
Multiply -4 times 25.
a=\frac{-\left(-30\right)±\sqrt{900-1600}}{2\times 25}
Multiply -100 times 16.
a=\frac{-\left(-30\right)±\sqrt{-700}}{2\times 25}
Add 900 to -1600.
a=\frac{-\left(-30\right)±10\sqrt{7}i}{2\times 25}
Take the square root of -700.
a=\frac{30±10\sqrt{7}i}{2\times 25}
The opposite of -30 is 30.
a=\frac{30±10\sqrt{7}i}{50}
Multiply 2 times 25.
a=\frac{30+10\sqrt{7}i}{50}
Now solve the equation a=\frac{30±10\sqrt{7}i}{50} when ± is plus. Add 30 to 10i\sqrt{7}.
a=\frac{3+\sqrt{7}i}{5}
Divide 30+10i\sqrt{7} by 50.
a=\frac{-10\sqrt{7}i+30}{50}
Now solve the equation a=\frac{30±10\sqrt{7}i}{50} when ± is minus. Subtract 10i\sqrt{7} from 30.
a=\frac{-\sqrt{7}i+3}{5}
Divide 30-10i\sqrt{7} by 50.
a=\frac{3+\sqrt{7}i}{5} a=\frac{-\sqrt{7}i+3}{5}
The equation is now solved.
25a^{2}-30a=-16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{25a^{2}-30a}{25}=-\frac{16}{25}
Divide both sides by 25.
a^{2}+\left(-\frac{30}{25}\right)a=-\frac{16}{25}
Dividing by 25 undoes the multiplication by 25.
a^{2}-\frac{6}{5}a=-\frac{16}{25}
Reduce the fraction \frac{-30}{25} to lowest terms by extracting and canceling out 5.
a^{2}-\frac{6}{5}a+\left(-\frac{3}{5}\right)^{2}=-\frac{16}{25}+\left(-\frac{3}{5}\right)^{2}
Divide -\frac{6}{5}, the coefficient of the x term, by 2 to get -\frac{3}{5}. Then add the square of -\frac{3}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{6}{5}a+\frac{9}{25}=\frac{-16+9}{25}
Square -\frac{3}{5} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{6}{5}a+\frac{9}{25}=-\frac{7}{25}
Add -\frac{16}{25} to \frac{9}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{3}{5}\right)^{2}=-\frac{7}{25}
Factor a^{2}-\frac{6}{5}a+\frac{9}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{3}{5}\right)^{2}}=\sqrt{-\frac{7}{25}}
Take the square root of both sides of the equation.
a-\frac{3}{5}=\frac{\sqrt{7}i}{5} a-\frac{3}{5}=-\frac{\sqrt{7}i}{5}
Simplify.
a=\frac{3+\sqrt{7}i}{5} a=\frac{-\sqrt{7}i+3}{5}
Add \frac{3}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}