Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x^{2}-50+6=-8
Use the distributive property to multiply 25 by x^{2}-2.
25x^{2}-44=-8
Add -50 and 6 to get -44.
25x^{2}-44+8=0
Add 8 to both sides.
25x^{2}-36=0
Add -44 and 8 to get -36.
\left(5x-6\right)\left(5x+6\right)=0
Consider 25x^{2}-36. Rewrite 25x^{2}-36 as \left(5x\right)^{2}-6^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{6}{5} x=-\frac{6}{5}
To find equation solutions, solve 5x-6=0 and 5x+6=0.
25x^{2}-50+6=-8
Use the distributive property to multiply 25 by x^{2}-2.
25x^{2}-44=-8
Add -50 and 6 to get -44.
25x^{2}=-8+44
Add 44 to both sides.
25x^{2}=36
Add -8 and 44 to get 36.
x^{2}=\frac{36}{25}
Divide both sides by 25.
x=\frac{6}{5} x=-\frac{6}{5}
Take the square root of both sides of the equation.
25x^{2}-50+6=-8
Use the distributive property to multiply 25 by x^{2}-2.
25x^{2}-44=-8
Add -50 and 6 to get -44.
25x^{2}-44+8=0
Add 8 to both sides.
25x^{2}-36=0
Add -44 and 8 to get -36.
x=\frac{0±\sqrt{0^{2}-4\times 25\left(-36\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 0 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 25\left(-36\right)}}{2\times 25}
Square 0.
x=\frac{0±\sqrt{-100\left(-36\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{0±\sqrt{3600}}{2\times 25}
Multiply -100 times -36.
x=\frac{0±60}{2\times 25}
Take the square root of 3600.
x=\frac{0±60}{50}
Multiply 2 times 25.
x=\frac{6}{5}
Now solve the equation x=\frac{0±60}{50} when ± is plus. Reduce the fraction \frac{60}{50} to lowest terms by extracting and canceling out 10.
x=-\frac{6}{5}
Now solve the equation x=\frac{0±60}{50} when ± is minus. Reduce the fraction \frac{-60}{50} to lowest terms by extracting and canceling out 10.
x=\frac{6}{5} x=-\frac{6}{5}
The equation is now solved.